4 resultados para computational reconstruction
em Universidad Politécnica de Madrid
Resumo:
The aim of this work is to solve a question raised for average sampling in shift-invariant spaces by using the well-known matrix pencil theory. In many common situations in sampling theory, the available data are samples of some convolution operator acting on the function itself: this leads to the problem of average sampling, also known as generalized sampling. In this paper we deal with the existence of a sampling formula involving these samples and having reconstruction functions with compact support. Thus, low computational complexity is involved and truncation errors are avoided. In practice, it is accomplished by means of a FIR filter bank. An answer is given in the light of the generalized sampling theory by using the oversampling technique: more samples than strictly necessary are used. The original problem reduces to finding a polynomial left inverse of a polynomial matrix intimately related to the sampling problem which, for a suitable choice of the sampling period, becomes a matrix pencil. This matrix pencil approach allows us to obtain a practical method for computing the compactly supported reconstruction functions for the important case where the oversampling rate is minimum. Moreover, the optimality of the obtained solution is established.
Resumo:
Complex networks have been extensively used in the last decade to characterize and analyze complex systems, and they have been recently proposed as a novel instrument for the analysis of spectra extracted from biological samples. Yet, the high number of measurements composing spectra, and the consequent high computational cost, make a direct network analysis unfeasible. We here present a comparative analysis of three customary feature selection algorithms, including the binning of spectral data and the use of information theory metrics. Such algorithms are compared by assessing the score obtained in a classification task, where healthy subjects and people suffering from different types of cancers should be discriminated. Results indicate that a feature selection strategy based on Mutual Information outperforms the more classical data binning, while allowing a reduction of the dimensionality of the data set in two orders of magnitude
Resumo:
Nonlinear analysis tools for studying and characterizing the dynamics of physiological signals have gained popularity, mainly because tracking sudden alterations of the inherent complexity of biological processes might be an indicator of altered physiological states. Typically, in order to perform an analysis with such tools, the physiological variables that describe the biological process under study are used to reconstruct the underlying dynamics of the biological processes. For that goal, a procedure called time-delay or uniform embedding is usually employed. Nonetheless, there is evidence of its inability for dealing with non-stationary signals, as those recorded from many physiological processes. To handle with such a drawback, this paper evaluates the utility of non-conventional time series reconstruction procedures based on non uniform embedding, applying them to automatic pattern recognition tasks. The paper compares a state of the art non uniform approach with a novel scheme which fuses embedding and feature selection at once, searching for better reconstructions of the dynamics of the system. Moreover, results are also compared with two classic uniform embedding techniques. Thus, the goal is comparing uniform and non uniform reconstruction techniques, including the one proposed in this work, for pattern recognition in biomedical signal processing tasks. Once the state space is reconstructed, the scheme followed characterizes with three classic nonlinear dynamic features (Largest Lyapunov Exponent, Correlation Dimension and Recurrence Period Density Entropy), while classification is carried out by means of a simple k-nn classifier. In order to test its generalization capabilities, the approach was tested with three different physiological databases (Speech Pathologies, Epilepsy and Heart Murmurs). In terms of the accuracy obtained to automatically detect the presence of pathologies, and for the three types of biosignals analyzed, the non uniform techniques used in this work lightly outperformed the results obtained using the uniform methods, suggesting their usefulness to characterize non-stationary biomedical signals in pattern recognition applications. On the other hand, in view of the results obtained and its low computational load, the proposed technique suggests its applicability for the applications under study.
Resumo:
Esta Tesis se centra en el desarrollo de un método para la reconstrucción de bases de datos experimentales incompletas de más de dos dimensiones. Como idea general, consiste en la aplicación iterativa de la descomposición en valores singulares de alto orden sobre la base de datos incompleta. Este nuevo método se inspira en el que ha servido de base para la reconstrucción de huecos en bases de datos bidimensionales inventado por Everson y Sirovich (1995) que a su vez, ha sido mejorado por Beckers y Rixen (2003) y simultáneamente por Venturi y Karniadakis (2004). Además, se ha previsto la adaptación de este nuevo método para tratar el posible ruido característico de bases de datos experimentales y a su vez, bases de datos estructuradas cuya información no forma un hiperrectángulo perfecto. Se usará una base de datos tridimensional de muestra como modelo, obtenida a través de una función transcendental, para calibrar e ilustrar el método. A continuación se detalla un exhaustivo estudio del funcionamiento del método y sus variantes para distintas bases de datos aerodinámicas. En concreto, se usarán tres bases de datos tridimensionales que contienen la distribución de presiones sobre un ala. Una se ha generado a través de un método semi-analítico con la intención de estudiar distintos tipos de discretizaciones espaciales. El resto resultan de dos modelos numéricos calculados en C F D . Por último, el método se aplica a una base de datos experimental de más de tres dimensiones que contiene la medida de fuerzas de una configuración ala de Prandtl obtenida de una campaña de ensayos en túnel de viento, donde se estudiaba un amplio espacio de parámetros geométricos de la configuración que como resultado ha generado una base de datos donde la información está dispersa. ABSTRACT A method based on an iterative application of high order singular value decomposition is derived for the reconstruction of missing data in multidimensional databases. The method is inspired by a seminal gappy reconstruction method for two-dimensional databases invented by Everson and Sirovich (1995) and improved by Beckers and Rixen (2003) and Venturi and Karniadakis (2004). In addition, the method is adapted to treat both noisy and structured-but-nonrectangular databases. The method is calibrated and illustrated using a three-dimensional toy model database that is obtained by discretizing a transcendental function. The performance of the method is tested on three aerodynamic databases for the flow past a wing, one obtained by a semi-analytical method, and two resulting from computational fluid dynamics. The method is finally applied to an experimental database consisting in a non-exhaustive parameter space measurement of forces for a box-wing configuration.