5 resultados para component classification

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Near Infrared Spectroscopy (NIRS) industrial application was developed by the LPF-Tagralia team, and transferred to a Spanish dehydrator company (Agrotécnica Extremeña S.L.) for the classification of dehydrator onion bulbs for breeding purposes. The automated operation of the system has allowed the classification of more than one million onion bulbs during seasons 2004 to 2008 (Table 1). The performance achieved by the original model (R2=0,65; SEC=2,28ºBrix) was enough for qualitative classification thanks to the broad range of variation of the initial population (18ºBrix). Nevertheless, a reduction of the classification performance of the model has been observed with the passing of seasons. One of the reasons put forward is the reduction of the range of variation that naturally occurs during a breeding process, the other is the variations in other parameters than the variable of interest but whose effects would probably be affecting the measurements [1]. This study points to the application of Independent Component Analysis (ICA) on this highly variable dataset coming from a NIRS industrial application for the identification of the different sources of variation present through seasons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Video-based vehicle detection is the focus of increasing interest due to its potential towards collision avoidance. In particular, vehicle verification is especially challenging due to the enormous variability of vehicles in size, color, pose, etc. In this paper, a new approach based on supervised learning using Principal Component Analysis (PCA) is proposed that addresses the main limitations of existing methods. Namely, in contrast to classical approaches which train a single classifier regardless of the relative position of the candidate (thus ignoring valuable pose information), a region-dependent analysis is performed by considering four different areas. In addition, a study on the evolution of the classification performance according to the dimensionality of the principal subspace is carried out using PCA features within a SVM-based classification scheme. Indeed, the experiments performed on a publicly available database prove that PCA dimensionality requirements are region-dependent. Hence, in this work, the optimal configuration is adapted to each of them, rendering very good vehicle verification results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of a common environment for processing different powder foods in the industry has increased the risk of finding peanut traces in powder foods. The analytical methods commonly used for detection of peanut such as enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR) represent high specificity and sensitivity but are destructive and time-consuming, and require highly skilled experimenters. The feasibility of NIR hyperspectral imaging (HSI) is studied for the detection of peanut traces down to 0.01% by weight. A principal-component analysis (PCA) was carried out on a dataset of peanut and flour spectra. The obtained loadings were applied to the HSI images of adulterated wheat flour samples with peanut traces. As a result, HSI images were reduced to score images with enhanced contrast between peanut and flour particles. Finally, a threshold was fixed in score images to obtain a binary classification image, and the percentage of peanut adulteration was compared with the percentage of pixels identified as peanut particles. This study allowed the detection of traces of peanut down to 0.01% and quantification of peanut adulteration from 10% to 0.1% with a coefficient of determination (r2) of 0.946. These results show the feasibility of using HSI systems for the detection of peanut traces in conjunction with chemical procedures, such as RT-PCR and ELISA to facilitate enhanced quality-control surveillance on food-product processing lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabajo presenta una solución al problema del reconocimiento del género de un rostro humano a partir de una imagen. Adoptamos una aproximación que utiliza la cara completa a través de la textura de la cara normalizada y redimensionada como entrada a un clasificador Näive Bayes. Presentamos la técnica de Análisis de Componentes Principales Probabilístico Condicionado-a-la-Clase (CC-PPCA) para reducir la dimensionalidad de los vectores de características para la clasificación y asegurar la asunción de independencia para el clasificador. Esta nueva aproximación tiene la deseable propiedad de presentar un modelo paramétrico sencillo para las marginales. Además, este modelo puede estimarse con muy pocos datos. En los experimentos que hemos desarrollados mostramos que CC-PPCA obtiene un 90% de acierto en la clasificación, resultado muy similar al mejor presentado en la literatura---ABSTRACT---This paper presents a solution to the problem of recognizing the gender of a human face from an image. We adopt a holistic approach by using the cropped and normalized texture of the face as input to a Naïve Bayes classifier. First it is introduced the Class-Conditional Probabilistic Principal Component Analysis (CC-PPCA) technique to reduce the dimensionality of the classification attribute vector and enforce the independence assumption of the classifier. This new approach has the desirable property of a simple parametric model for the marginals. Moreover this model can be estimated with very few data. In the experiments conducted we show that using CCPPCA we get 90% classification accuracy, which is similar result to the best in the literature. The proposed method is very simple to train and implement.