12 resultados para complexity of agents
em Universidad Politécnica de Madrid
Resumo:
The advent of new signal processing methods, such as non-linear analysis techniques, represents a new perspective which adds further value to brain signals' analysis. Particularly, Lempel–Ziv's Complexity (LZC) has proven to be useful in exploring the complexity of the brain electromagnetic activity. However, an important problem is the lack of knowledge about the physiological determinants of these measures. Although acorrelation between complexity and connectivity has been proposed, this hypothesis was never tested in vivo. Thus, the correlation between the microstructure of the anatomic connectivity and the functional complexity of the brain needs to be inspected. In this study we analyzed the correlation between LZC and fractional anisotropy (FA), a scalar quantity derived from diffusion tensors that is particularly useful as an estimate of the functional integrity of myelinated axonal fibers, in a group of sixteen healthy adults (all female, mean age 65.56 ± 6.06 years, intervals 58–82). Our results showed a positive correlation between FA and LZC scores in regions including clusters in the splenium of the corpus callosum, cingulum, parahipocampal regions and the sagittal stratum. This study supports the notion of a positive correlation between the functional complexity of the brain and the microstructure of its anatomical connectivity. Our investigation proved that a combination of neuroanatomical and neurophysiological techniques may shed some light on the underlying physiological determinants of brain's oscillations
Resumo:
Over the last decade, Grid computing paved the way for a new level of large scale distributed systems. This infrastructure made it possible to securely and reliably take advantage of widely separated computational resources that are part of several different organizations. Resources can be incorporated to the Grid, building a theoretical virtual supercomputer. In time, cloud computing emerged as a new type of large scale distributed system, inheriting and expanding the expertise and knowledge that have been obtained so far. Some of the main characteristics of Grids naturally evolved into clouds, others were modified and adapted and others were simply discarded or postponed. Regardless of these technical specifics, both Grids and clouds together can be considered as one of the most important advances in large scale distributed computing of the past ten years; however, this step in distributed computing has came along with a completely new level of complexity. Grid and cloud management mechanisms play a key role, and correct analysis and understanding of the system behavior are needed. Large scale distributed systems must be able to self-manage, incorporating autonomic features capable of controlling and optimizing all resources and services. Traditional distributed computing management mechanisms analyze each resource separately and adjust specific parameters of each one of them. When trying to adapt the same procedures to Grid and cloud computing, the vast complexity of these systems can make this task extremely complicated. But large scale distributed systems complexity could only be a matter of perspective. It could be possible to understand the Grid or cloud behavior as a single entity, instead of a set of resources. This abstraction could provide a different understanding of the system, describing large scale behavior and global events that probably would not be detected analyzing each resource separately. In this work we define a theoretical framework that combines both ideas, multiple resources and single entity, to develop large scale distributed systems management techniques aimed at system performance optimization, increased dependability and Quality of Service (QoS). The resulting synergy could be the key 350 J. Montes et al. to address the most important difficulties of Grid and cloud management.
Resumo:
Several authors have analysed the changes of the probability density function of the solar radiation with different time resolutions. Some others have approached to study the significance of these changes when produced energy calculations are attempted. We have undertaken different transformations to four Spanish databases in order to clarify the interrelationship between radiation models and produced energy estimations. Our contribution is straightforward: the complexity of a solar radiation model needed for yearly energy calculations, is very low. Twelve values of monthly mean of solar radiation are enough to estimate energy with errors below 3%. Time resolutions better than hourly samples do not improve significantly the result of energy estimations.
Resumo:
The Semantics Difficulty Model (SDM) is a model that measures the difficult of introducing semantics technology into a company. SDM manages three descriptions of stages, which we will refer to as ?snapshots?: a company semantic snapshot, data snapshot and semantic application snapshot. Understanding a priory the complexity of introducing semantics into a company is important because it allows the organization to take early decisions, thus saving time and money, mitigating risks and improving innovation, time to market and productivity. SDM works by measuring the distance between each initial snapshot and its reference models (the company semantic snapshots reference model, data snapshots reference model, and the semantic application snapshots reference model) with Euclidian distances. The difficulty level will be "not at all difficult" when the distance is small, and becomes "extremely difficult" when the the distance is large. SDM has been tested experimentally with 2000 simulated companies with arrangements and several initial stages. The output is measured by five linguistic values: "not at all difficult, slightly difficult, averagely difficult, very difficult and extremely difficult". As the preliminary results of our SDM simulation model indicate, transforming a search application into integrated data from different sources with semantics is a "slightly difficult", in contrast with data and opinion extraction applications for which it is "very difficult".
Resumo:
PURPOSE The decision-making process plays a key role in organizations. Every decision-making process produces a final choice that may or may not prompt action. Recurrently, decision makers find themselves in the dichotomous question of following a traditional sequence decision-making process where the output of a decision is used as the input of the next stage of the decision, or following a joint decision-making approach where several decisions are taken simultaneously. The implication of the decision-making process will impact different players of the organization. The choice of the decision- making approach becomes difficult to find, even with the current literature and practitioners’ knowledge. The pursuit of better ways for making decisions has been a common goal for academics and practitioners. Management scientists use different techniques and approaches to improve different types of decisions. The purpose of this decision is to use the available resources as well as possible (data and techniques) to achieve the objectives of the organization. The developing and applying of models and concepts may be helpful to solve managerial problems faced every day in different companies. As a result of this research different decision models are presented to contribute to the body of knowledge of management science. The first models are focused on the manufacturing industry and the second part of the models on the health care industry. Despite these models being case specific, they serve the purpose of exemplifying that different approaches to the problems and could provide interesting results. Unfortunately, there is no universal recipe that could be applied to all the problems. Furthermore, the same model could deliver good results with certain data and bad results for other data. A framework to analyse the data before selecting the model to be used is presented and tested in the models developed to exemplify the ideas. METHODOLOGY As the first step of the research a systematic literature review on the joint decision is presented, as are the different opinions and suggestions of different scholars. For the next stage of the thesis, the decision-making process of more than 50 companies was analysed in companies from different sectors in the production planning area at the Job Shop level. The data was obtained using surveys and face-to-face interviews. The following part of the research into the decision-making process was held in two application fields that are highly relevant for our society; manufacturing and health care. The first step was to study the interactions and develop a mathematical model for the replenishment of the car assembly where the problem of “Vehicle routing problem and Inventory” were combined. The next step was to add the scheduling or car production (car sequencing) decision and use some metaheuristics such as ant colony and genetic algorithms to measure if the behaviour is kept up with different case size problems. A similar approach is presented in a production of semiconductors and aviation parts, where a hoist has to change from one station to another to deal with the work, and a jobs schedule has to be done. However, for this problem simulation was used for experimentation. In parallel, the scheduling of operating rooms was studied. Surgeries were allocated to surgeons and the scheduling of operating rooms was analysed. The first part of the research was done in a Teaching hospital, and for the second part the interaction of uncertainty was added. Once the previous problem had been analysed a general framework to characterize the instance was built. In the final chapter a general conclusion is presented. FINDINGS AND PRACTICAL IMPLICATIONS The first part of the contributions is an update of the decision-making literature review. Also an analysis of the possible savings resulting from a change in the decision process is made. Then, the results of the survey, which present a lack of consistency between what the managers believe and the reality of the integration of their decisions. In the next stage of the thesis, a contribution to the body of knowledge of the operation research, with the joint solution of the replenishment, sequencing and inventory problem in the assembly line is made, together with a parallel work with the operating rooms scheduling where different solutions approaches are presented. In addition to the contribution of the solving methods, with the use of different techniques, the main contribution is the framework that is proposed to pre-evaluate the problem before thinking of the techniques to solve it. However, there is no straightforward answer as to whether it is better to have joint or sequential solutions. Following the proposed framework with the evaluation of factors such as the flexibility of the answer, the number of actors, and the tightness of the data, give us important hints as to the most suitable direction to take to tackle the problem. RESEARCH LIMITATIONS AND AVENUES FOR FUTURE RESEARCH In the first part of the work it was really complicated to calculate the possible savings of different projects, since in many papers these quantities are not reported or the impact is based on non-quantifiable benefits. The other issue is the confidentiality of many projects where the data cannot be presented. For the car assembly line problem more computational power would allow us to solve bigger instances. For the operation research problem there was a lack of historical data to perform a parallel analysis in the teaching hospital. In order to keep testing the decision framework it is necessary to keep applying more case studies in order to generalize the results and make them more evident and less ambiguous. The health care field offers great opportunities since despite the recent awareness of the need to improve the decision-making process there are many opportunities to improve. Another big difference with the automotive industry is that the last improvements are not spread among all the actors. Therefore, in the future this research will focus more on the collaboration between academia and the health care sector.
Resumo:
Magnetoencephalography (MEG) allows the real-time recording of neural activity and oscillatory activity in distributed neural networks. We applied a non-linear complexity analysis to resting-state neural activity as measured using whole-head MEG. Recordings were obtained from 20 unmedicated patients with major depressive disorder and 19 matched healthy controls. Subsequently, after 6 months of pharmacological treatment with the antidepressant mirtazapine 30 mg/day, patients received a second MEG scan. A measure of the complexity of neural signals, the Lempel–Ziv Complexity (LZC), was derived from the MEG time series. We found that depressed patients showed higher pre-treatment complexity values compared with controls, and that complexity values decreased after 6 months of effective pharmacological treatment, although this effect was statistically significant only in younger patients. The main treatment effect was to recover the tendency observed in controls of a positive correlation between age and complexity values. Importantly, the reduction of complexity with treatment correlated with the degree of clinical symptom remission. We suggest that LZC, a formal measure of neural activity complexity, is sensitive to the dynamic physiological changes observed in depression and may potentially offer an objective marker of depression and its remission after treatment.
Resumo:
Adaptive agents use feedback as a key strategy to cope with un- certainty and change in their environments. The information fed back from the sensorimotor loop into the control subsystem can be used to change four different elements of the controller: parameters associated to the control model, the control model itself, the functional organization of the agent and the functional realization of the agent. There are many change alternatives and hence the complexity of the agent’s space of potential configurations is daunting. The only viable alternative for space- and time-constrained agents —in practical, economical, evolutionary terms— is to achieve a reduction of the dimensionality of this configuration space. Emotions play a critical role in this reduction. The reduction is achieved by func- tionalization, interface minimization and by patterning, i.e. by selection among a predefined set of organizational configurations. This analysis lets us state how autonomy emerges from the integration of cognitive, emotional and autonomic systems in strict functional terms: autonomy is achieved by the closure of functional dependency. Emotion-based morphofunctional systems are able to exhibit complex adaptation patterns at a reduced cognitive cost. In this article we show a general model of how emotion supports functional adaptation and how the emotional biological systems operate following this theoretical model. We will also show how this model is also of applicability to the construction of a wide spectrum of artificial systems1.
Resumo:
Alzheimer's disease (AD) is the most common cause of dementia. Over the last few years, a considerable effort has been devoted to exploring new biomarkers. Nevertheless, a better understanding of brain dynamics is still required to optimize therapeutic strategies. In this regard, the characterization of mild cognitive impairment (MCI) is crucial, due to the high conversion rate from MCI to AD. However, only a few studies have focused on the analysis of magnetoencephalographic (MEG) rhythms to characterize AD and MCI. In this study, we assess the ability of several parameters derived from information theory to describe spontaneous MEG activity from 36 AD patients, 18 MCI subjects and 26 controls. Three entropies (Shannon, Tsallis and Rényi entropies), one disequilibrium measure (based on Euclidean distance ED) and three statistical complexities (based on Lopez Ruiz–Mancini–Calbet complexity LMC) were used to estimate the irregularity and statistical complexity of MEG activity. Statistically significant differences between AD patients and controls were obtained with all parameters (p < 0.01). In addition, statistically significant differences between MCI subjects and controls were achieved by ED and LMC (p < 0.05). In order to assess the diagnostic ability of the parameters, a linear discriminant analysis with a leave-one-out cross-validation procedure was applied. The accuracies reached 83.9% and 65.9% to discriminate AD and MCI subjects from controls, respectively. Our findings suggest that MCI subjects exhibit an intermediate pattern of abnormalities between normal aging and AD. Furthermore, the proposed parameters provide a new description of brain dynamics in AD and MCI.
Resumo:
Today's motivation for autonomous systems research stems out of the fact that networked environments have reached a level of complexity and heterogeneity that make their control and management by solely human administrators more and more difficult. The optimisation of performance metrics for the air traffic management system, like in other networked system, has become more complex with increasing number of flights, capacity constraints, environmental factors and safety regulations. It is anticipated that a new structure of planning layers and the introduction of higher levels of automation will reduce complexity and will optimise the performance metrics of the air traffic management system. This paper discusses the complexity of optimising air traffic management performance metrics and proposes a way forward based on higher levels of automation.
Resumo:
Abstract The development of cognitive robots needs a strong “sensorial” support which should allow it to perceive the real world for interacting with it properly. Therefore the development of efficient visual-processing software to be equipped in effective artificial agents is a must. In this project we study and develop a visual-processing software that will work as the “eyes” of a cognitive robot. This software performs a three-dimensional mapping of the robot’s environment, providing it with the essential information required to make proper decisions during its navigation. Due to the complexity of this objective we have adopted the Scrum methodology in order to achieve an agile development process, which has allowed us to correct and improve in a fast way the successive versions of the product. The present project is structured in Sprints, which cover the different stages of the software development based on the requirements imposed by the robot and its real necessities. We have initially explored different commercial devices oriented to the acquisition of the required visual information, adopting the Kinect Sensor camera (Microsoft) as the most suitable option. Later on, we have studied the available software to manage the obtained visual information as well as its integration with the robot’s software, choosing the high-level platform Matlab as the common nexus to join the management of the camera, the management of the robot and the implementation of the behavioral algorithms. During the last stages the software has been developed to include the fundamental functionalities required to process the real environment, such as depth representation, segmentation, and clustering. Finally the software has been optimized to exhibit real-time processing and a suitable performance to fulfill the robot’s requirements during its operation in real situations.
Resumo:
Nonlinear analysis tools for studying and characterizing the dynamics of physiological signals have gained popularity, mainly because tracking sudden alterations of the inherent complexity of biological processes might be an indicator of altered physiological states. Typically, in order to perform an analysis with such tools, the physiological variables that describe the biological process under study are used to reconstruct the underlying dynamics of the biological processes. For that goal, a procedure called time-delay or uniform embedding is usually employed. Nonetheless, there is evidence of its inability for dealing with non-stationary signals, as those recorded from many physiological processes. To handle with such a drawback, this paper evaluates the utility of non-conventional time series reconstruction procedures based on non uniform embedding, applying them to automatic pattern recognition tasks. The paper compares a state of the art non uniform approach with a novel scheme which fuses embedding and feature selection at once, searching for better reconstructions of the dynamics of the system. Moreover, results are also compared with two classic uniform embedding techniques. Thus, the goal is comparing uniform and non uniform reconstruction techniques, including the one proposed in this work, for pattern recognition in biomedical signal processing tasks. Once the state space is reconstructed, the scheme followed characterizes with three classic nonlinear dynamic features (Largest Lyapunov Exponent, Correlation Dimension and Recurrence Period Density Entropy), while classification is carried out by means of a simple k-nn classifier. In order to test its generalization capabilities, the approach was tested with three different physiological databases (Speech Pathologies, Epilepsy and Heart Murmurs). In terms of the accuracy obtained to automatically detect the presence of pathologies, and for the three types of biosignals analyzed, the non uniform techniques used in this work lightly outperformed the results obtained using the uniform methods, suggesting their usefulness to characterize non-stationary biomedical signals in pattern recognition applications. On the other hand, in view of the results obtained and its low computational load, the proposed technique suggests its applicability for the applications under study.
Resumo:
The spatial complexity of the distribution of organic matter, chemicals, nutrients, pollutants has been demonstrated to have multifractal nature (Kravchenco et al. [1]). This fact supports the possibility of existence of some emergent heterogeneity structure built under the evolution of the system. The aim of this note is providing a consistent explanation to the mentioned results via an extremely simple model.