4 resultados para commercial yield

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research was to implement a methodology through the generation of a supervised classifier based on the Mahalanobis distance to characterize the grapevine canopy and assess leaf area and yield using RGB images. The method automatically processes sets of images, and calculates the areas (number of pixels) corresponding to seven different classes (Grapes, Wood, Background, and four classes of Leaf, of increasing leaf age). Each one is initialized by the user, who selects a set of representative pixels for every class in order to induce the clustering around them. The proposed methodology was evaluated with 70 grapevine (V. vinifera L. cv. Tempranillo) images, acquired in a commercial vineyard located in La Rioja (Spain), after several defoliation and de-fruiting events on 10 vines, with a conventional RGB camera and no artificial illumination. The segmentation results showed a performance of 92% for leaves and 98% for clusters, and allowed to assess the grapevine’s leaf area and yield with R2 values of 0.81 (p < 0.001) and 0.73 (p = 0.002), respectively. This methodology, which operates with a simple image acquisition setup and guarantees the right number and kind of pixel classes, has shown to be suitable and robust enough to provide valuable information for vineyard management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mediterranean climate is characterized by hot summer, high evapotranspiration rates, and scarce precipitations (400 mm per year) during grapevine cycle. These extremely dry conditions affect vineyard productivity and sustainability. Supplementary irrigation is a needed practice in order to maintain yield and quality. Almost all Spanish grape growing regions are characterized by these within this context, especially in the center region, where this study was performed. The main objective of this work was to study the influence of irrigation on yield and quality. For this aim, we applied different levels of irrigation (mm of water applied) during different stages of growth and berry maturity. Four experimental treatments were applied considering the amount of water and the moment of the application: T1: Water irrigation (420 mm) applied from bloom to maturity. T2: Corresponded to the traditional irrigation scheduling, from preveraison to maturity (154 mm). T3: Water irrigation from bloom to preveraison, and water deficit from veraison to maturity (312 mm). T4: Irrigation applied from preveraison to maturity (230 mm) Experimental vineyard, cv. Cabernet Sauvignon, was located in a commercial vineyard (Bodegas Licinia S.L.) in the hot region of Morata de Tajuña (Madrid). The trial was performed during 2010 and 2011 seasons. Our results showed that yield increased from 2010 to 2011 in the treatments with a higher amount of water appli ed, T1 and T3 (24 and 10 % of yield increase respectively). This was mainly due to an increase in bud fertility (nº of bunches per shoot). Furthermore, sugar content was higher in T3 (27.3 ºBrix), followed by T2 (27 ºBrix). By contrast, T4 (irrigation from veraison) presented the lowest solid soluble concentration and the highest acidity. These results suggest that grapevine has an intrinsic capacity to adapt to its environment. However, this adaptation capacity should be evaluated considering the sensibility of quality parameters during the maturity period (acidity, pH, aroma, color...) and its impact on yield. Here, we demonstrated that a higher amount of water irrigation applied was no linked to a negative effect on quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to analyse several factors of variation of slurry composition and to establish prediction equations for potential methane (CH4) and ammonia (NH3) emissions. Seventy-nine feed and slurry samples were collected at two seasons (summer and winter) from commercial pig farms sited at two Spanish regions (Centre and Mediterranean). Nursery, growing-fattening, gestating and lactating facilities were sampled. Feed and slurry composition were determined, and potential CH4 and NH3 emissions measured at laboratory. Feed nutrient contents were used as covariates in the analysis. Near infrared reflectance spectroscopy (NIRS) was evaluated as a predicting tool for slurry composition and potential gaseous emissions. A wide variability was found both in feed and slurry composition. Mediterranean farms had a higher pH (p<0.001) and ash (p=0.02) concentration than those located at the Centre of Spain. Also, type of farm affected ether extract content of the slurry (p=0.02), with highest values obtained for the youngest animal facilities. Results suggested a buffer effect of dietary fibre on slurry pH and a direct relationship (p<0.05) with fibre constituents of manure. Dietary protein content did not affect slurry nitrogen content but decreased (p=0.003) total and volatile solids concentration. Prediction models of potential NH3 emissions (R2=0.89) and CH4 yield (R2=0.61) were obtained from slurry composition. Predictions from NIRS showed a high accuracy for most slurry constituents (R2>0.90) and similar accuracy of prediction of potential NH3 and CH4 emissions (R2=0.84 and 0.68, respectively) to models using slurry characteristics, which can be of interest to estimate emissions from commercial farms and establish mitigation strategies or optimize biogas production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Airén is the most worldwide spread white grape cultivar, high yielding, well adapted to hot, dry conditions, and not very sensitive to fungal diseases. Its largest growing region is La Mancha, where Airén has been traditionally bush trained, spur pruned and grown with no irrigation. However, grape growing has evolved to meet the need for higher yields and harvest mechanization; and modern cultural practices train grape vines to simple multi-wire trellis systems, cane pruned, and usually irrigated. The aim of the present study was to evaluate the yield and sugar accumulating capacities of Airén cultivar with regard to leaf area, and to assess the influence that different yield components have on yield. In 2014, five commercial irrigated vineyards, located in La Mancha, of different ages, and grafted onto different rootstocks were selected for this study. Canopy surface area (SA) was measured at maturity. Berry weight and sugar concentration were measured during ripening on a weekly basis. Yield and yield components were determined at harvest. Values for shoot density ranged 2.3-5.1 shoots/m2; SA, 0.6-1.1 m2/m2; yield, 20-40 t/ha; fertility, 1.1-1.7 bunches/shoot; bunch weight, 450-650 g; berry weight, 2.5-2.9 g; and sugar concentration, 17-21 ºBrix. The number of bunches per shoot was the yield component that had the greatest influence on yield. The number of berries was the main contributing factor to bunch weight. A lineal relationship between SA/yield and sugar concentration was observed, with values of SA/yield ranging from 0.20 to 0.45 m2/kg. A ratio SA/yield of approximately 0.4 m2/kg was needed to reach a value of 20 ºBrix. Hence it would be necessary a SA of 12000 m2/ha, under the conditions of this study, to achieve a 30 t/ha yield, and a sugar concentration of 20 ºBrix. These results are a step forward in the study of the Airén cultivar, being of help for grape growers in the center area of Spain in order to maximize crop yield and sugar accumulation.