8 resultados para cognitive functions
em Universidad Politécnica de Madrid
Resumo:
Acquired Brain Injury (ABI), either caused by vascular or traumatic nature, is one of the most important causes for neurological disabilities. People who suffer ABI see how their quality of life decreases, due to the affection of one or some of the cognitive functions (memory, attention, language or executive functions). The traditional cognitive rehabilitation protocols are too expensive, so every help carried out in this area is justified. PREVIRNEC is a new platform for cognitive tele-rehabilitation that allows the neuropsychologist to schedule rehabilitation sessions consisted of specifically designed tasks, plus offering an additional way of communication between neuropsychologists and patients. Besides, the platform offers a knowledge management module that allows the optimization of the cognitive rehabilitation to this kind of patients.
Resumo:
Although progressive functional brain network disruption has been one of the hallmarks of Alzheimer?s Dis- ease, little is known about the origin of this functional impairment that underlies cognitive symptoms. We in- vestigated how the loss of white matter (WM) integrity disrupts the organization of the functional networks at different frequency bands. The analyses were performed in a sample of healthy elders and mild cognitive im- pairment (MCI) subjects. Spontaneous brain magnetic activity (measured with magnetoencephalography) was characterized with phase synchronization analysis, and graph theory was applied to the functional networks. We identified WM areas (using diffusion weighted magnetic resonance imaging) that showed a statistical de- pendence between the fractional anisotropy and the graph metrics. These regions are part of an episodic mem- ory network and were also related to cognitive functions. Our data support the hypothesis that disruption of the anatomical networks influences the organization at the functional level resulting in the prodromal dementia syndrome of MCI.
Resumo:
Neuroimaging studies provide evidence for organized intrinsic activity under task-free conditions. This activity serves functionally relevant brain systems supporting cognition. Here, we analyze changes in resting-state functional connectivity after videogame practice applying a test–retest design. Twenty young females were selected from a group of 100 participants tested on four standardized cognitive ability tests. The practice and control groups were carefully matched on their ability scores. The practice group played during two sessions per week across 4 weeks (16 h total) under strict supervision in the laboratory, showing systematic performance improvements in the game. A group independent component analysis (GICA) applying multisession temporal concatenation on test–retest resting-state fMRI, jointly with a dual-regression approach, was computed. Supporting the main hypothesis, the key finding reveals an increased correlated activity during rest in certain predefined resting state networks (albeit using uncorrected statistics) attributable to practice with the cognitively demanding tasks of the videogame. Observed changes were mainly concentrated on parietofrontal networks involved in heterogeneous cognitive functions.
Resumo:
Nuestro cerebro contiene cerca de 1014 sinapsis neuronales. Esta enorme cantidad de conexiones proporciona un entorno ideal donde distintos grupos de neuronas se sincronizan transitoriamente para provocar la aparición de funciones cognitivas, como la percepción, el aprendizaje o el pensamiento. Comprender la organización de esta compleja red cerebral en base a datos neurofisiológicos, representa uno de los desafíos más importantes y emocionantes en el campo de la neurociencia. Se han propuesto recientemente varias medidas para evaluar cómo se comunican las diferentes partes del cerebro a diversas escalas (células individuales, columnas corticales, o áreas cerebrales). Podemos clasificarlos, según su simetría, en dos grupos: por una parte, la medidas simétricas, como la correlación, la coherencia o la sincronización de fase, que evalúan la conectividad funcional (FC); mientras que las medidas asimétricas, como la causalidad de Granger o transferencia de entropía, son capaces de detectar la dirección de la interacción, lo que denominamos conectividad efectiva (EC). En la neurociencia moderna ha aumentado el interés por el estudio de las redes funcionales cerebrales, en gran medida debido a la aparición de estos nuevos algoritmos que permiten analizar la interdependencia entre señales temporales, además de la emergente teoría de redes complejas y la introducción de técnicas novedosas, como la magnetoencefalografía (MEG), para registrar datos neurofisiológicos con gran resolución. Sin embargo, nos hallamos ante un campo novedoso que presenta aun varias cuestiones metodológicas sin resolver, algunas de las cuales trataran de abordarse en esta tesis. En primer lugar, el creciente número de aproximaciones para determinar la existencia de FC/EC entre dos o más señales temporales, junto con la complejidad matemática de las herramientas de análisis, hacen deseable organizarlas todas en un paquete software intuitivo y fácil de usar. Aquí presento HERMES (http://hermes.ctb.upm.es), una toolbox en MatlabR, diseñada precisamente con este fin. Creo que esta herramienta será de gran ayuda para todos aquellos investigadores que trabajen en el campo emergente del análisis de conectividad cerebral y supondrá un gran valor para la comunidad científica. La segunda cuestión practica que se aborda es el estudio de la sensibilidad a las fuentes cerebrales profundas a través de dos tipos de sensores MEG: gradiómetros planares y magnetómetros, esta aproximación además se combina con un enfoque metodológico, utilizando dos índices de sincronización de fase: phase locking value (PLV) y phase lag index (PLI), este ultimo menos sensible a efecto la conducción volumen. Por lo tanto, se compara su comportamiento al estudiar las redes cerebrales, obteniendo que magnetómetros y PLV presentan, respectivamente, redes más densamente conectadas que gradiómetros planares y PLI, por los valores artificiales que crea el problema de la conducción de volumen. Sin embargo, cuando se trata de caracterizar redes epilépticas, el PLV ofrece mejores resultados, debido a la gran dispersión de las redes obtenidas con PLI. El análisis de redes complejas ha proporcionado nuevos conceptos que mejoran caracterización de la interacción de sistemas dinámicos. Se considera que una red está compuesta por nodos, que simbolizan sistemas, cuyas interacciones se representan por enlaces, y su comportamiento y topología puede caracterizarse por un elevado número de medidas. Existe evidencia teórica y empírica de que muchas de ellas están fuertemente correlacionadas entre sí. Por lo tanto, se ha conseguido seleccionar un pequeño grupo que caracteriza eficazmente estas redes, y condensa la información redundante. Para el análisis de redes funcionales, la selección de un umbral adecuado para decidir si un determinado valor de conectividad de la matriz de FC es significativo y debe ser incluido para un análisis posterior, se convierte en un paso crucial. En esta tesis, se han obtenido resultados más precisos al utilizar un test de subrogadas, basado en los datos, para evaluar individualmente cada uno de los enlaces, que al establecer a priori un umbral fijo para la densidad de conexiones. Finalmente, todas estas cuestiones se han aplicado al estudio de la epilepsia, caso práctico en el que se analizan las redes funcionales MEG, en estado de reposo, de dos grupos de pacientes epilépticos (generalizada idiopática y focal frontal) en comparación con sujetos control sanos. La epilepsia es uno de los trastornos neurológicos más comunes, con más de 55 millones de afectados en el mundo. Esta enfermedad se caracteriza por la predisposición a generar ataques epilépticos de actividad neuronal anormal y excesiva o bien síncrona, y por tanto, es el escenario perfecto para este tipo de análisis al tiempo que presenta un gran interés tanto desde el punto de vista clínico como de investigación. Los resultados manifiestan alteraciones especificas en la conectividad y un cambio en la topología de las redes en cerebros epilépticos, desplazando la importancia del ‘foco’ a la ‘red’, enfoque que va adquiriendo relevancia en las investigaciones recientes sobre epilepsia. ABSTRACT There are about 1014 neuronal synapses in the human brain. This huge number of connections provides the substrate for neuronal ensembles to become transiently synchronized, producing the emergence of cognitive functions such as perception, learning or thinking. Understanding the complex brain network organization on the basis of neuroimaging data represents one of the most important and exciting challenges for systems neuroscience. Several measures have been recently proposed to evaluate at various scales (single cells, cortical columns, or brain areas) how the different parts of the brain communicate. We can classify them, according to their symmetry, into two groups: symmetric measures, such as correlation, coherence or phase synchronization indexes, evaluate functional connectivity (FC); and on the other hand, the asymmetric ones, such as Granger causality or transfer entropy, are able to detect effective connectivity (EC) revealing the direction of the interaction. In modern neurosciences, the interest in functional brain networks has increased strongly with the onset of new algorithms to study interdependence between time series, the advent of modern complex network theory and the introduction of powerful techniques to record neurophysiological data, such as magnetoencephalography (MEG). However, when analyzing neurophysiological data with this approach several questions arise. In this thesis, I intend to tackle some of the practical open problems in the field. First of all, the increase in the number of time series analysis algorithms to study brain FC/EC, along with their mathematical complexity, creates the necessity of arranging them into a single, unified toolbox that allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of them. I developed such a toolbox for this aim, it is named HERMES (http://hermes.ctb.upm.es), and encompasses several of the most common indexes for the assessment of FC and EC running for MatlabR environment. I believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis and will entail a great value for the scientific community. The second important practical issue tackled in this thesis is the evaluation of the sensitivity to deep brain sources of two different MEG sensors: planar gradiometers and magnetometers, in combination with the related methodological approach, using two phase synchronization indexes: phase locking value (PLV) y phase lag index (PLI), the latter one being less sensitive to volume conduction effect. Thus, I compared their performance when studying brain networks, obtaining that magnetometer sensors and PLV presented higher artificial values as compared with planar gradiometers and PLI respectively. However, when it came to characterize epileptic networks it was the PLV which gives better results, as PLI FC networks where very sparse. Complex network analysis has provided new concepts which improved characterization of interacting dynamical systems. With this background, networks could be considered composed of nodes, symbolizing systems, whose interactions with each other are represented by edges. A growing number of network measures is been applied in network analysis. However, there is theoretical and empirical evidence that many of these indexes are strongly correlated with each other. Therefore, in this thesis I reduced them to a small set, which could more efficiently characterize networks. Within this framework, selecting an appropriate threshold to decide whether a certain connectivity value of the FC matrix is significant and should be included in the network analysis becomes a crucial step, in this thesis, I used the surrogate data tests to make an individual data-driven evaluation of each of the edges significance and confirmed more accurate results than when just setting to a fixed value the density of connections. All these methodologies were applied to the study of epilepsy, analysing resting state MEG functional networks, in two groups of epileptic patients (generalized and focal epilepsy) that were compared to matching control subjects. Epilepsy is one of the most common neurological disorders, with more than 55 million people affected worldwide, characterized by its predisposition to generate epileptic seizures of abnormal excessive or synchronous neuronal activity, and thus, this scenario and analysis, present a great interest from both the clinical and the research perspective. Results revealed specific disruptions in connectivity and network topology and evidenced that networks’ topology is changed in epileptic brains, supporting the shift from ‘focus’ to ‘networks’ which is gaining importance in modern epilepsy research.
Resumo:
In the last decades, neuropsychological theories tend to consider cognitive functions as a result of the whole brainwork and not as individual local areas of its cortex. Studies based on neuroimaging techniques have increased in the last years, promoting an exponential growth of the body of knowledge about relations between cognitive functions and brain structures [1]. However, so fast evolution make complicated to integrate them in verifiable theories and, even more, translated in to cognitive rehabilitation. The aim of this research work is to develop a cognitive process-modeling tool. The purpose of this system is, in the first term, to represent multidimensional data, from structural and functional connectivity, neuroimaging, data from lesion studies and derived data from clinical intervention [2][3]. This will allow to identify consolidated knowledge, hypothesis, experimental designs, new data from ongoing studies and emerging results from clinical interventions. In the second term, we pursuit to use Artificial Intelligence to assist in decision making allowing to advance towards evidence based and personalized treatments in cognitive rehabilitation. This work presents the knowledge base design of the knowledge representation tool. It is compound of two different taxonomies (structure and function) and a set of tags linking both taxonomies at different levels of structural and functional organization. The remainder of the abstract is organized as follows: Section 2 presents the web application used for gathering necessary information for generating the knowledge base, Section 3 describes knowledge base structure and finally Section 4 expounds reached conclusions.
Resumo:
Schizophrenia is a mental disorder characterized by a breakdown of cognitive processes and by a deficit of typi-cal emotional responses. Effectiveness of computerized task has been demonstrated in the field of cognitive rehabilitation. However, current rehabilitation programs based on virtual environments normally focus on higher cognitive functions, not covering social cognition training. This paper presents a set of video-based tasks specifically designed for the rehabilita-tion of emotional processing deficits in patients in early stages of schizophrenia or schizoaffective disorders. These tasks are part of the Mental Health program of Guttmann NeuroPer-sonalTrainer® cognitive tele-rehabilitation platform, and entail innovation both from a clinical and technological per-spective in relation with former traditional therapeutic con-tents.
Resumo:
El Daño Cerebral Adquirido (DCA) se define como una lesión cerebral que ocurre después del nacimiento y que no guarda relación con defectos congénitos o enfermedades degenerativas. En el cerebro, se llevan a cabo las funciones mentales superiores como la atención, la memoria, las funciones ejecutivas y el lenguaje, consideradas pre-requisitos básicos de la inteligencia. Sea cual sea su causa, todo daño cerebral puede afectar a una o varias de estas funciones, de ahí la gravedad del problema. A pesar de los avances en nuevas técnicas de intervención precoz y el desarrollo de los cuidados intensivos, las afectaciones cerebrales aún no tienen tratamiento ni quirúrgico ni farmacológico que permita una restitución de las funciones perdidas. Los tratamientos de neurorrehabilitación cognitiva y funcional pretenden, por tanto, la minimización o compensación de las alteraciones ocasionadas por una lesión en el sistema nervioso. En concreto, la rehabilitación cognitiva se define como el proceso en el que personas que han sufrido un daño cerebral trabajan de manera conjunta con profesionales de la salud para remediar o aliviar los déficits cognitivos surgidos como consecuencia de un episodio neurológico. Esto se consigue gracias a la naturaleza plástica del sistema nervioso, donde el cerebro es capaz de reconfigurar sus conexiones neuronales, tanto creando nuevas como modificando las ya existentes. Durante los últimos años hemos visto una transformación de la sociedad, en lo que se ha denominado "sociedad de la información", cuyo pilar básico son las Tecnologías de la Información y las Comunicaciones (TIC). La aplicación de estas tecnologías en medicina ha revolucionado la manera en que se proveen los servicios sanitarios. Así, donde tecnología y medicina se mezclan, la telerrehabilitación se define como la rehabilitación a distancia, ayudando a extender los servicios de rehabilitación más allá de los centros hospitalarios, rompiendo las barreras geográficas, mejorando la eficiencia de los procesos y monitorizando en todo momento el estado y evolución del paciente. En este contexto, el objetivo general de la presente tesis es mejorar la rehabilitación neuropsicológica de pacientes que sufren alteraciones cognitivas, mediante el diseño, desarrollo y validación de un sistema de telemedicina que incorpora las TIC para avanzar hacia un nuevo paradigma personalizado, ubicuo y ecológico. Para conseguirlo, se han definido los siguientes objetivos específicos: • Analizar y modelar un sistema de telerrehabilitación, mediante la definición de objetivos y requisitos de usuario para diseñar las diferentes funcionalidades necesarias. • Definir una arquitectura de telerrehabilitación escalable para la prestación de diferentes servicios que agrupe las funcionalidades necesarias en módulos. • Diseñar y desarrollar la plataforma de telerrehabilitación, incluida la interfaz de usuario, creando diferentes roles de usuario con sus propias funcionalidades. • Desarrollar de un módulo de análisis de datos para extraer conocimiento basado en los resultados históricos de las sesiones de rehabilitación almacenadas en el sistema. • Evaluación de los resultados obtenidos por los pacientes después del programa de rehabilitación, obteniendo conclusiones sobre los beneficios del servicio implementado. • Evaluación técnica de la plataforma de telerrehabilitación, así como su usabilidad y la relación coste/beneficio. • Integración de un dispositivo de eye-tracking que permita la monitorización de la atención visual mientras los pacientes ejecutan tareas de neurorrehabilitación. •Diseño y desarrollo de un entorno de monitorización que permita obtener patrones de atención visual. Como resumen de los resultados obtenidos, se ha desarrollado y validado técnicamente la plataforma de telerrehabilitación cognitiva, demostrando la mejora en la eficiencia de los procesos, sin que esto resulte en una reducción de la eficacia del tratamiento. Además, se ha llevado a cabo una evaluación de la usabilidad del sistema, con muy buenos resultados. Respecto al módulo de análisis de datos, se ha diseñado y desarrollado un algoritmo que configura y planifica sesiones de rehabilitación para los pacientes, de manera automática, teniendo en cuenta las características específicas de cada paciente. Este algoritmo se ha denominado Intelligent Therapy Assistant (ITA). Los resultados obtenidos por el asistente muestran una mejora tanto en la eficiencia como en la eficacia de los procesos, comparado los resultados obtenidos con los de la planificación manual llevada a cabo por los terapeutas. Por último, se ha integrado con éxito el dispositivo de eye-tracking en la plataforma de telerrehabilitación, llevando a cabo una prueba con pacientes y sujetos control que ha demostrado la viabilidad técnica de la solución, así como la existencia de diferencias en los patrones de atención visual en pacientes con daño cerebral. ABSTRACT Acquired Brain Injury (ABI) is defined as brain damage that suddenly and unexpectedly appears in people’s life, being the main cause of disability in developed countries. The brain is responsible of the higher cognitive functions such as attention, memory, executive functions or language, which are considered basic requirements of the intelligence. Whatever its cause is, every ABI may affects one or several functions, highlighting the severity of the problem. New techniques of early intervention and the development of intensive ABI care have noticeably improved the survival rate. However, despite these advances, brain injuries still have no surgical or pharmacological treatment to re-establish lost functions. Cognitive rehabilitation is defined as a process whereby people with brain injury work together with health service professionals and others to remediate or alleviate cognitive deficits arising from a neurological insult. This is achieved by taking advantage of the plastic nature of the nervous system, where the brain can reconfigure its connections, both creating new ones, and modifying the previously existing. Neuro-rehabilitation aims to optimize the plastic nature by inducing a reorganization of the neural network, based on specific experiences. Personalized interventions from individual impairment profile will be necessary to optimize the remaining resources by potentiating adaptive responses and inhibiting maladaptive changes. In the last years, some applications and software programs have been developed to train or stimulate cognitive functions of different neuropsychological disorders, such as ABI, Alzheimer, psychiatric disorders, attention deficit or hyperactivity disorder (ADHD). The application of technologies into medicine has changed the paradigm. Telemedicine allows improving the quality of clinical services, providing better access to them and helping to break geographical barriers. Moreover, one of the main advantages of telemedicine is the possibility to extend the therapeutic processes beyond the hospital (e.g. patient's home). As a consequence, a reduction of unnecessary costs and a better costs/benefits ratio are achieved, making possible a more efficient use of the available resources In this context, the main objective of this work is to improve neuro-rehabilitation of patients suffering cognitive deficits, by designing, developing and validating a telemedicine system that incorporates ICTs to change this paradigm, making it more personalized, ubiquitous and ecologic. The following specific objectives have been defined: • To analyse and model a tele-rehabilitation system, defining objectives and user requirements to design the different needed functionalities. • To define a scalable tele-rehabilitation architecture to offer different services grouping functionalities into modules. • To design and develop the tele-rehabilitation platform, including the graphic user interface, creating different user roles and permissions. • To develop a data analysis module to extract knowledge based on the historic results from the rehabilitation sessions stored in the system. • To evaluate the obtained results by patients after the rehabilitation program, arising conclusions about the benefits of the implemented service. • To technically evaluate the tele-rehabilitation platform, and its usability and the costs/benefit ratio. • To integrate an eye-tracking device allowing the monitoring of the visual attention while patients execute rehabilitation tasks. •To design and develop a monitoring environment that allows to obtain visual attention patterns. Summarizing the obtained results, the cognitive tele-rehabilitation platform has been developed and evaluated technically, demonstrating the improvements on the efficiency without worsening the efficacy of the process. Besides, a usability evaluation has been carried out, with very good results. Regarding the data analysis module, an algorithm has been designed and developed to automatically select and configure rehabilitation sessions, taking into account the specific characteristics of each patient. This algorithm is called Intelligent Therapy Assistant (ITA). The obtained results show an improvement both in the efficiency and the efficacy of the process, comparing the results obtained by patients when they receive treatments scheduled manually by therapists. Finally, an eye-tracking device has been integrated in the tele-rehabilitation platform, carrying out a study with patients and control subjects demonstrating the technical viability of the developed monitoring environment. First results also show that there are differences between the visual attention patterns between ABI patients and control subjects.
Resumo:
This article presents research focused on tracking manual tasks that are applied in cognitive rehabilitation so as to analyze the movements of patients who suffer from Apraxia and Action Disorganization Syndrome (AADS). This kind of patients find executing Activities of Daily Living (ADL) too difficult due to the loss of memory and capacity to carry out sequential tasks or the impossibility of associating different objects with their functions. This contribution is developed from the work of Universidad Politécnica de Madrid and Technical University of Munich in collaboration with The University of Birmingham. The KinectTM for Windows© device is used for this purpose. The data collected is compared to an ultrasonic motion capture system. The results indicate a moderate to strong correlation between signals. They also verify that KinectTM is very suitable and inexpensive. Moreover, it turns out to be a motion-capture system quite easy to implement for kinematics analysis in ADL.