9 resultados para cogeneration
em Universidad Politécnica de Madrid
Resumo:
In this paper, a general vision of cogeneration penetration in the European Union is shown; after this, a case study is included, evaluating as a function of two factors (electricity and emission allowance prices) the suitability of installing, for an industry with a determined thermal demand, two different options. The first one is a gas turbine cogeneration plant generating steam through a heat recovery steam generator (HRSG). The second one consists of installing a natural gas boiler for steam production covering the electricity demand from the grid. The CO2 emissions from both options are compared regarding different kinds of generation mixes from the electricity grid in the case of using the industrial boiler; taking into account the advantages of using biomass in relation to emissions, a last comparison has been carried out considering a biomass boiler instead of the natural gas boiler.
Resumo:
The progressive depletion of fossil fuels and their high contribution to the energy supply in this modern society forces that will be soon replaced by renewable fuels. But the dispersion and alternation of renewable energy production also undertake to reduce their costs to use as energy storage and hydrogen carrier. It is necessary to develop technologies for hydrogen production from all renewable energy storage technologies and the development of energy production from hydrogen fuel cells and cogeneration and tri generation systems. In order to propel this technological development discussed where the hydrogen plays a key role as energy storage and renewable energy, the National Centre of Hydrogen and Fuel Cell Technology Experimentation in Spain equipped with installations that enable scientific and technological design, develop, verify, certify, approve, test, measure and, more importantly, the facility ensures continuous operation for 24 hours a day, 365 days year. At the same time, the system is scalable so as to allow continuous adaptation of new technologies are developed and incorporated into the assembly to verify integration at the same time it checks the validity of their development. The transformation sector can be said to be the heart of the system, because without neglecting the other sectors, this should prove the validity of hydrogen as a carrier - energy storage are important efforts that have to do to demonstrate the suitability of fuel cells or internal combustion systems to realize the energy stored in hydrogen at prices competitive with conventional systems. The multiple roles to meet the fuel cells under different conditions of operation require to cover their operating conditions, many different sizes and applications. The fourth area focuses on integration is an essential complement within the installation. We must integrate not only the electricity produced, but also hydrogen is used and the heat generated in the process of using hydrogen energy. The energy management in its three forms: hydrogen chemical, electrical and thermal integration requires complicated and require a logic and artificial intelligence extremes to ensure maximum energy efficiency at the same time optimum utilization is achieved. Verification of the development and approval in the entire production system and, ultimately, as a demonstrator set to facilitate the simultaneous evolution of production technology, storage and distribution of hydrogen fuel cells has been assessed.
Resumo:
The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45?46%, either in the form of Hydrogen, electricity, or both.
Resumo:
El alcance del proyecto es describir las directrices técnicas, la definición de criterios, y la estrategia de suministro de energía (Electricidad. Calefacción y Agua Caliente Sanitaria (ACS)) a un barrio modelo situado en un entorno urbano. De inicio se estudia los diversos modelos energéticos atendiendo a la normativa y tecnología, que se pueden aplicar en un conjunto residencial, dando como resultado el modelo propuesto de abastecimiento energético, mediante calefacción de distrito, que incorporara el diseño de una planta de producción de energía termo-eléctrica o Central de Energías basada en la tecnología de condensación de baja temperatura para calefacción y A.C.S. incluyendo una cogeneración con pila de combustible. Al mismo tiempo se han calculado y diseñado una serie de chimeneas externas para dar cumplida necesidad técnica y legal al proyecto. Estos estudios nos sirven de punto de partida para analizar la amortización de la inversión y por tanto la rentabilidad y viabilidad del proyecto, comparándose con los costes económicos derivados de la generación por sistemas convencionales. Para finalizar se hace mención a las ventajas medioambientales y a los grados de seguridad en la planta de producción ABSTRACT The scope of this work is the description of an energy supply project ( Electricity, heat and hot water ) to a housing development in a urban neibourhood , including technical criteria in their different options. Initially, several solutions are studied based on available technologies and legal restrictions. The final proposal is based on the district hearing model including electricity production in cogeneration via fuel cell technology as well as heating and hot water produced by low temperature condensation boilers It includes calculations and design criteria of the exhaust gases system and chimeneys in compliance with legal requirement in urban areas. This work also includes an economical model including payback, IRR and VAN analysis and an economical comparaison with the standard solutions. Finally, environmental advantages of the preferred solution over other standards as well as safety issues are also presented.
Resumo:
En el presente proyecto se estudia la viabilidad, tanto técnica como económica, de la instalación de una planta de cogeneración, en una industria alimentaria en Aldaya (Valencia). El diseño de la central de cogeneración se basa en la demanda energética de la fábrica, atendiendo a los requisitos necesarios para acogerse al Régimen Especial de producción de energía eléctrica establecidos en el Real Decreto 661/2007, de 25 de mayo. En cuanto a la viabilidad económica, se ha elegido la alternativa de venta de electricidad a la red a tarifa, (a un precio fijo y regulado) con el fin de asegurar los ingresos en el estudio económico y reducir la sensibilidad del proyecto a las variables del mercado. Como resultado se obtienen la reducción de los costes de energía de la fábrica, mejora de la fiabilidad de suministro, reducción de emisiones globales de CO2, y una elevada rentabilidad del proyecto. ABSTRACT The aim of this project is to study the technical and economic feasibility of a cogeneration plant in a food industry in Aldaya (Valencia). The design of the cogeneration plant is based on the energetic demand of the factory, attending to the requirements specified in the Special Regime of production of electric power established in the R.D. 661/2007. The studied alternative in terms of economic viability is selling electricity to the net by tariff, which is a fixed and regulated price in order to assure the revenue in the economic study and to reduce the project sensitivity to the market variation. The results obtained are: reduction in energy costs of the fabric, improvement of reliability in the electrical supply, reduction of global CO2 emission, and high profitability of the project.
Resumo:
A description of the first renewable forward market mechanisms in the Iberian Electricity Market is provided. A contract for difference mechanism is available in Spain since March 2011between the last resort suppliers and the special regime (renewables and cogeneration) settling the price differences between the equilibrium price of the forward regulated auctions for the last resort supply and the spot price of the corresponding delivery period. Regulated auctions of baseload futures of the Portuguese zone in which the Portuguese last resort supplier sells the special regime production exist since December 2011. The experience gained from renewables auctions in Latin America could be used in the Iberian Electricity market, complementing these first market mechanisms. Introduction of renewable auctions at least for the most mature technologies (i.e. wind) in Spain and Portugal providing a fair price for the renewable generation will be of utmost importance in the short term to diminish the tariff deficit caused by the massive deployment of the feed-in-tariff scheme. Liquidity in the forward markets will also increase as a result of the entry of renewable generation companies intending to maximize their profits due to gradual suppression of feed in tariff schemes.
Resumo:
El alcance de este proyecto es dimensionar un sistema de trigeneración para una industria papelera. El proyecto se realizará en base a la propuesta de la nueva reforma de la ley energética, por la cual no se podrá vender la energía eléctrica generada a la red sino que toda la energía generada ha de ser utilizada de forma exclusiva para autoconsumo. En primer lugar se desarrolla un proceso de selección de los equipos y tecnologías para la cogeneración, que posteriormente servirá para el dimensionamiento de la planta, en el cual se elegirá la tecnología oportuna para la generación de energía eléctrica y energía térmica, tanto en forma de frío como de calor. Con este estudio se podrá calcular el ahorro conseguido por el nuevo sistema propuesto, comparado con los costes de la generación por sistemas convencionales y desde ese ahorro, analizar la rentabilidad y viabilidad del proyecto en función de la inversión inicial que supone dicho proyecto. Abstract The scope of this project is to measure a trigeneration system for paper industry. The project will be based on the proposal of the new reform of the energy law, by which the electricity generated to the network may not be sold but that all the generated energy has to be used exclusively for self-consumption. First of all the study develops a process of selection of the equipment and technologies for cogeneration, which subsequently will be used for the dimensioning of the plant, the result will be an election of the appropriate technology for the generation of electric power and heat energy, both in the form of cold and heat. With this study the savings achieved by the new proposed system will be estimated, compared with costs of conventional generation and from these savings, analized for profitability and viability of the project on the basis of the initial investment involved in this project.
Resumo:
Nowadays increasing fuel prices and upcoming pollutant emission regulations are becoming a growing concern for the shipping industry worldwide. While fuel prices will keep rising in future years, the new International Convention for the Prevention of Pollution from Ships (MARPOL) and Sulphur Emissions Control Areas (SECA) regulations will forbid ships to use heavy fuel oils at certain situations. To fulfil with these regulations, the next step in the marine shipping business will comprise the use of cleaner fuels on board as well as developing new propulsion concept. In this work a new conceptual marine propulsion system is developed, based on the integration of diesel generators with fuel cells in a 2850 metric tonne of deadweight platform supply vessel. The efficiency of the two 250 kW methanol-fed Solid Oxide Fuel Cell (SOFC) system installed on board combined with the hydro dynamically optimized design of the hull of the ship will allow the ship to successfully operate at certain modes of operation while notably reduce the pollutant emissions to the atmosphere. Besides the cogeneration heat obtained from the fuel cell system will be used to answer different heating needs on board the vessel
Resumo:
En la actualidad la generación y utilización eficientes de la energía es el vector principal que permite el desarrollo sostenible en el marco ambiental, económico, seguro y rentable. Todo ello genera una necesidad en el ser humano de guiar a los avances tecnológicos hacia una manera cada vez más eficiente de generar nuestras necesidades básicas, como es el caso de la energía. La cogeneración ha sido uno de los resultados positivos en la búsqueda de la eficiencia energética, debido a tratarse de un sistema de producción simultánea de calor y electricidad partiendo inicialmente de un combustible como energía primaria. Es por ello, que en el presente proyecto se estudia, analiza y propone la posibilidad de implantar sistemas de cogeneración en el sector residencial, un sector que podría beneficiarse enormemente de los beneficios que ofrecen dichos sistemas. En una primera parte se analiza la tecnología de cogeneración y sus variantes, como son, la microcogeneración y la trigeneración. También se muestra la evolución legislativa que han sufrido estos sistemas. En una segunda parte se ha tomado un caso modelo, un edificio de 72 viviendas con sistema de calderas centralizado convencional, y se ha estudiado la posibilidad de implantar un sistema de cogeneración. Para ello se han calculado previamente las demandas energéticas del edificio y se han ido proponiendo diferentes modos de operación para cubrir dichas demandas por medio de sistemas de microcogeneración o cogeneración. Finalmente, una vez valoradas las opciones se muestra la elegida y se efectúa un análisis económico ABSTRACT Nowadays the efficient generation of energy is the main vector that allows sustainable development in environmental, economic, safety and cost effectiveness. All this generates a need in humans to lead to new technological advances towards an even more efficient way to generate our basic needs, such as energy. Cogeneration has been one of the positive results in the search for energy efficiency, due to the fact that it is a system of simultaneous production of heat and electricity initially starting from a primary energy fuel. It is for this reason that this project studies, analyzes and proposes the possibility of introducing cogeneration systems in the residential sector, a sector that could benefit greatly from the benefits offered by these systems. In the first part, cogeneration technology and its variants are analyzed, like, micro-cogeneration and trigeneration. The legislative evolutions that have suffered these systems are also displayed. In a second part, a model case has been taken; a building of 72 flats with conventional centralized boiler system, the possibility of introducing a cogeneration system has been studied. Previously the energy demands of the building have been calculated proposing different operating modes to meet those demands through micro-CHP or cogeneration systems. Finally, once the options are valued the chosen one is shown and an economic analysis is performed.