22 resultados para code generation

em Universidad Politécnica de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Software Product Line Engineering has significant advantages in family-based software development. The common and variable structure for all products of a family is defined through a Product-Line Architecture (PLA) that consists of a common set of reusable components and connectors which can be configured to build the different products. The design of PLA requires solutions for capturing such configuration (variability). The Flexible-PLA Model is a solution that supports the specification of external variability of the PLA configuration, as well as internal variability of components. However, a complete support for product-line development requires translating architecture specifications into code. This complex task needs automation to avoid human error. Since Model-Driven Development allows automatic code generation from models, this paper presents a solution to automatically generate AspectJ code from Flexible-PLA models previously configured to derive specific products. This solution is supported by a modeling framework and validated in a software factory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose an analysis for detecting procedures and goals that are deterministic (i.e. that produce at most one solution), or predicates whose clause tests are mutually exclusive (which implies that at most one of their clauses will succeed) even if they are not deterministic (because they cali other predicates that can produce more than one solution). Applications of such determinacy information include detecting programming errors, performing certain high-level program transformations for improving search efñciency, optimizing low level code generation and parallel execution, and estimating tighter upper bounds on the computational costs of goals and data sizes, which can be used for program debugging, resource consumption and granularity control, etc. We have implemented the analysis and integrated it in the CiaoPP system, which also infers automatically the mode and type information that our analysis takes as input. Experiments performed on this implementation show that the analysis is fairly accurate and efncient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Software Engineering (SE) community has historically focused on working with models to represent functionality and persistence, pushing interaction modelling into the background, which has been covered by the Human Computer Interaction (HCI) community. Recently, adequately modelling interaction, and specifically usability, is being considered as a key factor for success in user acceptance, making the integration of the SE and HCI communities more necessary. If we focus on the Model-Driven Development (MDD) paradigm, we notice that there is a lack of proposals to deal with usability features from the very first steps of software development process. In general, usability features are manually implemented once the code has been generated from models. This contradicts the MDD paradigm, which claims that all the analysts? effort must be focused on building models, and the code generation is relegated to model to code transformations. Moreover, usability features related to functionality may involve important changes in the system architecture if they are not considered from the early steps. We state that these usability features related to functionality can be represented abstractly in a conceptual model, and their implementation can be carried out automatically.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enabling Subject Matter Experts (SMEs) to formulate knowledge without the intervention of Knowledge Engineers (KEs) requires providing SMEs with methods and tools that abstract the underlying knowledge representation and allow them to focus on modeling activities. Bridging the gap between SME-authored models and their representation is challenging, especially in the case of complex knowledge types like processes, where aspects like frame management, data, and control flow need to be addressed. In this paper, we describe how SME-authored process models can be provided with an operational semantics and grounded in a knowledge representation language like F-logic in order to support process-related reasoning. The main results of this work include a formalism for process representation and a mechanism for automatically translating process diagrams into executable code following such formalism. From all the process models authored by SMEs during evaluation 82% were well-formed, all of which executed correctly. Additionally, the two optimizations applied to the code generation mechanism produced a performance improvement at reasoning time of 25% and 30% with respect to the base case, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los servicios en red que conocemos actualmente están basados en documentos y enlaces de hipertexto que los relacionan entre sí sin aportar verdadera información acerca de los contenidos que representan. Podría decirse que se trata de “una red diseñada por personas para ser interpretada por personas”. El objetivo principal de los últimos años es encaminar esta red hacia una web de conocimiento, en la que la información pueda ser interpretada por agentes computerizados de manera automática. Para llevar a cabo esta transformación es necesaria la utilización de nuevas tecnologías especialmente diseñadas para la descripción de contenidos como son las ontologías. Si bien las redes convencionales están evolucionando, no son las únicas que lo están haciendo. El rápido crecimiento de las redes de sensores y el importante aumento en el número de dispositivos conectados a internet, hace necesaria la incorporación de tecnologías de la web semántica a este tipo de redes. Para la realización de este Proyecto de Fin de Carrera se utilizará la ontología SSN, diseñada para la descripción semántica de sensores y las redes de las que forman parte con el fin de permitir una mejor interacción entre los dispositivos y los sistemas que hacen uso de ellos. El trabajo desarrollado a lo largo de este Proyecto de Fin de Carrera gira en torno a esta ontología, siendo el principal objetivo la generación semiautomática de código a partir de un modelo de sistemas descrito en función de las clases y propiedades proporcionadas por SSN. Para alcanzar este fin se dividirá el proyecto en varias partes. Primero se realizará un análisis de la ontología mencionada. A continuación se describirá un sistema simulado de sensores y por último se implementarán las aplicaciones para la generación automática de interfaces y la representación gráfica de los dispositivos del sistema a partir de la representación del éste en un fichero de tipo OWL. ABSTRACT. The web we know today is based on documents and hypertext links that relate these documents with each another, without providing consistent information about the contents they represent. It could be said that its a network designed by people to be used by people. The main goal of the last couple of years is to guide this network into a web of knowledge, where information can be automatically processed by machines. This transformation, requires the use of new technologies specially designed for content description such as ontologies. Nowadays, conventional networks are not the only type of networks evolving. The use of sensor networks and the number of sensor devices connected to the Internet is rapidly increasing, making the use the integration of semantic web technologies to this kind of networks completely necessary. The SSN ontology will be used for the development of this Final Degree Dissertation. This ontology was design to semantically describe sensors and the networks theyre part of, allowing a better interaction between devices and the systems that use them. The development carried through this Final Degree Dissertation revolves around this ontology and aims to achieve semiautomatic code generation starting from a system model described based on classes and properties provided by SSN. To reach this goal, de Dissertation will be divided in several parts. First, an analysis about the mentioned ontology will be made. Following this, a simulated sensor system will be described, and finally, the implementation of the applications will take place. One of these applications will automatically generate de interfaces and the other one will graphically represents the devices in the sensor system, making use of the system representation in an OWL file.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This summary presents a methodology for supporting the development of AOSAs following the MDD paradigm. This new methodology is called PRISMA and allows the code generation from models which specify functional and non-functional requirements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La evolución de las redes eléctricas se dirige hacia lo que se conoce como “Smart Grids” o “Redes Eléctricas Inteligentes”. Estas “Smart Grids” se componen de subestaciones eléctricas, que a su vez se componen de unos dispositivos llamados IEDs (Dispositivos Electrónicos Inteligentes – Intelligent Electronic Devices). El diseño de IEDs se encuentra definido en la norma IEC 61850, que especifica además un Lenguaje de Configuración de Subestaciones (Substation Configuration Language SCL) para la definición de la configuración de subestaciones y sus IEDs. Hoy en día, este estándar internacional no sólo se utiliza para diseñar correctamente IEDs y asegurar su interoperabilidad, sino que también se utiliza para el diseño de otros dispositivos de la red eléctrica, como por ejemplo, medidores inteligentes. Sin embargo, aunque existe una tendencia cada vez mayor del uso de este estándar, la comprensión y el manejo del mismo resulta difícil debido al gran volumen de información que lo compone y del nivel de detalle que utiliza, por lo que su uso para el diseño de IEDs se hace tedioso sin la ayuda de un soporte software. Es por ello que, para facilitar la aplicación del estándar IEC 61850 en el diseño de IEDs se han desarrollado herramientas como “Visual SCL”, “SCL Explorer” o “61850 SCLVisual Design Tool”. En concreto, “61850 SCLVisual Design Tool” es una herramienta gráfica para el modelado de subestaciones electricas, generada mediante el uso de los frameworks Eclipse Modeling Framework (EMF) y Epsilon Generative Modeling Technologies (GMT) y desarrollada por el grupo de investigación SYST de la UPM. El objetivo de este proyecto es añadir una nueva funcionalidad a la herramienta “61850 Visual SCL DesignTool”. Esta nueva funcionalidad consiste en la generación automática de un fichero de configuración de subestaciones eléctricas según el estándar IEC 61850 a partir de de una herramienta de diseño gráfico. Este fichero, se denomina SCD (Substation Configuration Description), y se trata de un fichero XML conforme a un esquema XSD (XML Schema Definition) mediante el que se define el lenguaje de configuración de subestaciones SCL del IEC 61850. Para el desarrollo de este proyecto, es necesario el estudio del lenguaje para la configuración de subestaciones SCL, así como del lenguaje gráfico específico de dominio definido por la herramienta “61850 SCLVisual Design Tool”, la estructura de los ficheros SCD, y finalmente, del lenguaje EGL (Epsilon Generation Language) para la transformación y generación automática de código a partir de modelos EMF. ABSTRACT Electrical networks are evolving to “Smart Grids”. Smart Grids are composed of electrical substations that in turn are composed of devices called IEDs (Intelligent Electronic Devices). The design of IEDs is defined by the IEC 61850 standard, which also specifies a Substation Configuration Languaje (SCL) used to define the configuration of substations and their IEDs. Nowadays, this international standard is not only used to design properly IEDs and guarantee their interoperability, but it is also used to design different electrical network devices, such as, smart meters. However, although the use of this standard is growing, its compression as well as its management, is still difficult due to its large volume of information and its level of detail. As a result, designing IEDs becomes a tedious task without a software support. As a consequence of this, in order to make easier the application of the IEC 61850 standard while designing IEDs, some software tools have been developed, such as: “Visual SCL”, “SCL Explorer” or “61850 SCLVisual Design Tool”. In particular, “61850 SCLVisual Design Tool” is a graphical tool used to make electrical substations models, and developed with the Eclipse Modeling Framework (EMF) and Epsilon Generative Modeling Technologies (GMT) by the research group SYST of the UPM. The aim of this project is to add a new functionality to “61850 Visual SCL DesignTool”. This new functionality consists of the automatic code generation of a substation configuration file according to the IEC 61850 standard. This file is called SCD (Substation Configuration Description), and it is a XML file that follows a XSD (XML Schema Definition) that defines the Substation Configuration Language (SCL) of the IEC 61850. In order to develop this project, it is necessary to study the Substation Configuration Language (SCL), the domain-specific graphical languaje defined by the tool “61850 SCLVisual Design Tool”, the structure of a SCD file, and the Epsilon Generation Language (EGL) used for the automatic code generation from EMF models

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstraction-Carrying Code (ACC) has recently been proposed as a framework for mobile code safety in which the code supplier provides a program together with an abstraction whose validity entails compliance with a predefined safety policy. The abstraction plays thus the role of safety certifícate and its generation is carried out automatically by a fixed-point analyzer. The advantage of providing a (fixedpoint) abstraction to the code consumer is that its validity is checked in a single pass of an abstract interpretation-based checker. A main challenge is to reduce the size of certificates as much as possible while at the same time not increasing checking time. In this paper, we first introduce the notion of reduced certifícate which characterizes the subset of the abstraction which a checker needs in order to validate (and re-construct) the full certifícate in a single pass. Based on this notion, we then instrument a generic analysis algorithm with the necessary extensions in order to identify the information relevant to the checker.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proof-Carrying Code (PCC) is a general approach to mobile code safety in which programs are augmented with a certificate (or proof). The intended benefit is that the program consumer can locally validate the certificate w.r.t. the "untrustcd" program by means of a certificate checker a process which should be much simpler, efficient, and automatic than generating the original proof. The practical uptake of PCC greatly depends on the existence of a variety of enabling technologies which allow both proving programs correct and replacing a costly verification process by an efficient checking proceduri on th( consumer side. In this work we propose Abstraction- Carrying Code (ACC), a novel approach which uses abstract interpretation as enabling technology. We argue that the large body of applications of abstract interpretation to program verification is amenable to the overall PCC scheme. In particular, we rely on an expressive class of safely policies which can be defined over different abstract domains. We use an abstraction (or abstract model) of the program computed by standard static analyzers as a certificate. The validity of the abstraction on ihe consumer side is checked in a single pass by a very efficient and specialized abstract-interpreter. We believe that ACC brings the expressiveness, flexibility and automation which is inherent in abstract interpretation techniques to the area of mobile code safety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There exists an interest in performing pin-by-pin calculations coupled with thermal hydraulics so as to improve the accuracy of nuclear reactor analysis. In the framework of the EU NURISP project, INRNE and UPM have generated an experimental version of a few group diffusion cross sections library with discontinuity factors intended for VVER analysis at the pin level with the COBAYA3 code. The transport code APOLLO2 was used to perform the branching calculations. As a first proof of principle the library was created for fresh fuel and covers almost the full parameter space of steady state and transient conditions. The main objective is to test the calculation schemes and post-processing procedures, including multi-pin branching calculations. Two library options are being studied: one based on linear table interpolation and another one using a functional fitting of the cross sections. The libraries generated with APOLLO2 have been tested with the pin-by-pin diffusion model in COBAYA3 including discontinuity factors; first comparing 2D results against the APOLLO2 reference solutions and afterwards using the libraries to compute a 3D assembly problem coupled with a simplified thermal-hydraulic model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstraction-Carrying Code (ACC) has recently been proposed as a framework for mobile code safety in which the code supplier provides a program together with an abstraction whose validity entails compliance with a predefined safety policy. The abstraction plays thus the role of safety certifícate and its generation is carried out automatically by a fixed-point analyzer. The advantage of providing a (fixedpoint) abstraction to the code consumer is that its validity is checked in a single pass of an abstract interpretation-based checker. A main challenge is to reduce the size of certificates as much as possible while at the same time not increasing checking time. We introduce the notion of reduced certifícate which characterizes the subset of the abstraction which a checker needs in order to validate (and re-construct) the full certifícate in a single pass. Based on this notion, we instrument a generic analysis algorithm with the necessary extensions in order to identify the information relevant to the checker. We also provide a correct checking algorithm together with sufficient conditions for ensuring its completeness. The experimental results within the CiaoPP system show that our proposal is able to greatly reduce the size of certificates in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proof-Carrying Code (PCC) is a general approach to mobile code safety in which programs are augmented with a certifícate (or proof). The practical uptake of PCC greatly depends on the existence of a variety of enabling technologies which allow both to prove programs correct and to replace a costly verification process by an efñcient checking procedure on the consumer side. In this work we propose Abstraction-Carrying Code (ACC), a novel approach which uses abstract interpretation as enabling technology. We argüe that the large body of applications of abstract interpretation to program verification is amenable to the overall PCC scheme. In particular, we rely on an expressive class of safety policies which can be defined over different abstract domains. We use an abstraction (or abstract model) of the program computed by standard static analyzers as a certifícate. The validity of the abstraction on the consumer side is checked in a single-pass by a very efficient and specialized abstract-interpreter. We believe that ACC brings the expressiveness, flexibility and automation which is inherent in abstract interpretation techniques to the área of mobile code safety. We have implemented and benchmarked ACC within the Ciao system preprocessor. The experimental results show that the checking phase is indeed faster than the proof generation phase, and that the sizes of certificates are reasonable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstraction-Carrying Code (ACC) is a framework for mobile code safety in which the code supplier provides a program together with an abstraction (or abstract model of the program) whose validity entails compliance with a predefined safety policy. The abstraction plays thus the role of safety certificate and its generation is carried out automatically by a fixed-point analyzer. The advantage of providing a (fixed-point) abstraction to the code consumer is that its validity is checked in a single pass (i.e., one iteration) of an abstract interpretation-based checker. A main challenge to make ACC useful in practice is to reduce the size of certificates as much as possible, while at the same time not increasing checking time. Intuitively, we only include in the certificate the information which the checker is unable to reproduce without iterating. We introduce the notion of reduced certifícate which characterizes the subset of the abstraction which a checker needs in order to validate (and re-construct) the full certificate in a single pass. Based on this notion, we show how to instrument a generic analysis algorithm with the necessary extensions in order to identify the information relevant to the checker.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proof-Carrying Code (PCC) is a general approach to mobile code safety in which the code supplier augments the program with a certifícate (or proof). The intended benefit is that the program consumer can locally validate the certifícate w.r.t. the "untrusted" program by means of a certifícate checker—a process which should be much simpler, eíñcient, and automatic than generating the original proof. Abstraction Carrying Code (ACC) is an enabling technology for PCC in which an abstract model of the program plays the role of certifícate. The generation of the certifícate, Le., the abstraction, is automatically carried out by an abstract interpretation-based analysis engine, which is parametric w.r.t. different abstract domains. While the analyzer on the producer side typically has to compute a semantic fixpoint in a complex, iterative process, on the receiver it is only necessary to check that the certifícate is indeed a fixpoint of the abstract semantics equations representing the program. This is done in a single pass in a much more efficient process. ACC addresses the fundamental issues in PCC and opens the door to the applicability of the large body of frameworks and domains based on abstract interpretation as enabling technology for PCC. We present an overview of ACC and we describe in a tutorial fashion an application to the problem of resource-aware security in mobile code. Essentially the information computed by a cost analyzer is used to genérate cost certificates which attest a safe and efficient use of a mobile code. A receiving side can then reject code which brings cost certificates (which it cannot validate or) which have too large cost requirements in terms of computing resources (in time and/or space) and accept mobile code which meets the established requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstraction-Carrying Code (ACC) has recently been proposed as a framework for mobile code safety in which the code supplier provides a program together with an abstraction (or abstract model of the program) whose validity entails compliance with a predefined safety policy. The abstraction plays thus the role of safety certifícate and its generation is carried out automatically by a fixed-point analyzer. The advantage of providing a (fixed-point) abstraction to the code consumer is that its validity is checked in a single pass (i.e., one iteration) of an abstract interpretation-based checker. A main challenge to make ACC useful in practice is to reduce the size of certificates as much as possible while at the same time not increasing checking time. The intuitive idea is to only include in the certifícate information that the checker is unable to reproduce without iterating. We introduce the notion of reduced certifícate which characterizes the subset of the abstraction which a checker needs in order to validate (and re-construct) the full certifícate in a single pass. Based on this notion, we instrument a generic analysis algorithm with the necessary extensions in order to identify information which can be reconstructed by the single-pass checker. Finally, we study what the effects of reduced certificates are on the correctness and completeness of the checking process. We provide a correct checking algorithm together with sufficient conditions for ensuring its completeness. Our ideas are illustrated through a running example, implemented in the context of constraint logic programs, which shows that our approach improves state-of-the-art techniques for reducing the size of certificates.