9 resultados para classes (groups of students)
em Universidad Politécnica de Madrid
Resumo:
decade has raised the interest among the research community on the acceptance and use of these systems by both teachers and students. At first, the implementation of LMS was based on their technical design and the adaptation of the learning processes to the virtual environment, neglecting students’ characteristics when the systems were deployed, which led to expensive and failing implementations. The Unified Theory of Acceptance and Use of Technology (UTAUT) proposes a framework which allows the study of the acceptance and use of technology that takes into consideration the students’ characteristics and how they affect the acceptance and the degree of use of educational technology. This study questions the role of the user’s attitude towards use of LMS and uses the UTAUT to examine the moderating effect of technological culture in the adoption of LMS in Spain. The results from the comparison and analysis of three different models confirm the relevance of attitude towards use as an antecedent of intention to use the system, as well as the important moderating effect of gender and technological culture. The discussion of results suggests the need for a more in-depth analysis and interrelations of cultural dimensions in the adoption of educational technologies and learning management systems
Resumo:
In this paper we report the process of designing and building the EYEFLY 1, a real UAS platform which has just performed its maiden flight. For the development of this aircraft, 30 groups of students from successive years at the Escuela Universitaria de Ingeniería Técnica Aeronáutica (EUITA) of the Universidad Politécnica de Madrid (UPM) carried out their compulsory End of Degree Project as a coordinated Project Based learning activity. Our conclusions clearly indicate that Project Based Learning activities can provide a valid complement to more conventional, theoretically-based, teaching methods. The combination of both approaches will allow us to maintain traditional but well-tested methods for providing our students with a sound knowledge of fundamental engineering disciplines and, at the same time, to introduce our students to exciting and relevant engineering situations and sceneries where social and business skills, such as communication skills, team-working or decision-taking, can be put into practice.
Resumo:
We present and analyze the results of surveys conducted in recent years with students from two related subjects, but taught in different centers of the University of Madrid. These surveys are part of the objectives of various projects of educational innovation, and applied through the platform Moodle.
Resumo:
It is known that cross-curricular competences are required for main companies all over the world to be part of our university graduates as technical knowledge does. That is the reason which has led the university structure to include these competences in the every degree curriculo validated since the European Higher Education Area (EHEA)was introduced in the Spanish university context. But the way used for incorporating them has been developed without the necessary guidelines to generate a qualified model.
Resumo:
This work presents an educational formal initiative aimed to monitor the acquisition and strengthening of competences by students that are being taught in project management subject. Groups of students belonging to three universities, embracing different knowledge areas such as engineering, biology, etc., were selected to run the experience. All of them had nevertheless a common and basic starting point: inexperience in project management field. In this scenario, we propose a new theoretical and practical approach oriented to reinforce problem-solving and related competences in a project management subject context. For this purpose, a Project-Based Learning (PjBL) initiative has been specifically designed and developed. The main idea is to bring a real world engineering project management case into the classroom, where students must face up to a completely new learning approach –groups in different locations, collaborative mode and unspecific solution, supported by a powerful internet platform:.project.net (http://www.Project.net). Other relevant aspects such as project climate, knowledge increasing, have also been monitored during the course. Results show and overall improvement in key competences. The obtained information will be used in two ways: to feed the students back about personal opportunities for improvement in specific competences, and to fine-tune the experience for further initiatives.
Resumo:
The EHEA proposes a student-centered teaching model. Therefore, it seems necessary to actively involve the students in the teaching-learning process. Increasing the active participation of the students is not always easy in mathematical topics, since, when the students just enter the University, their ability to carry out autonomous mathematical work is scarce. In this paper we present some experiences related with the use of Computer Algebra Systems (CAS). All the experiences are designed in order to develop some mathematical competencies and mainly self-learning, the use of technology and team-work. The experiences include some teachers? proposals including: small projects to be executed in small groups, participation in competitions, the design of different CAS-Toolboxes, etc. The results obtained in the experiences, carried out with different groups of students from different engineering studies at different universities, makes us slightly optimistic about the educational value of the model.
Resumo:
En esta tesis se ha profundizado en el estudio y desarrollo de modelos de soporte para el aprendizaje colaborativo a distancia, que ha permitido proponer una arquitectura fundamentada en los principios del paradigma CSCL (Computer Supported Collaborative Learning). La arquitectura propuesta aborda un tipo de problema concreto que requiere el uso de técnicas derivadas del Trabajo Colaborativo, la Inteligencia Artificial, Interfaces de Usuario así como ideas tomadas de la Pedagogía y la Psicología. Se ha diseñado una solución completa, abierta y genérica. La arquitectura aprovecha las nuevas tecnologías para lograr un sistema efectivo de apoyo a la educación a distancia. Está organizada en cuatro niveles: el de Configuración, el de Experiencia, el de Organización y el de Análisis. A partir de ella se ha implementado un sistema llamado DEGREE. En DEGREE, cada uno de los niveles de la arquitectura da lugar a un subsistema independiente pero relacionado con los otros. La aplicación saca partido del uso de espacios de trabajo estructurados. El subsistema Configurador de Experiencias permite definir los elementos de un espacio de trabajo y una experiencia y adaptarlos a cada tipo de usuario. El subsistema Manejador de Experiencias recoge las contribuciones de los usuarios para construir una solución conjunta de un problema. Las intervenciones de los alumnos se estructuran basándose en un grafo conversacional genérico. Además, se registran todas las acciones de los usuarios para representar explícitamente el proceso completo que lleva a la solución. Estos datos también se almacenan en una memoria común que constituye el subsistema llamado Memoria Organizativa de Experiencias. El subsistema Analizador estudia las intervenciones de los usuarios. Este análisis permite inferir conclusiones sobre la forma en que trabajan los grupos y sus actitudes frente a la colaboración, teniendo en cuenta además el conocimiento subjetivo del observador. El proceso de desarrollo en paralelo de la arquitectura y el sistema ha seguido un ciclo de refinamiento en cinco fases con sucesivas etapas de prototipado y evaluación formativa. Cada fase de este proceso se ha realizado con usuarios reales y se han considerado las opiniones de los usuarios para mejorar las funcionalidades de la arquitectura así como la interfaz del sistema. Esta aproximación ha permitido, además, comprobar la utilidad práctica y la validez de las propuestas que sustentan este trabajo.---ABSTRACT---In this thesis, we have studied in depth the development of support models for distance collaborative learning and subsequently devised an architecture based on the Computer Supported Collaborative Learning paradigm principles. The proposed architecture addresses a specific problem: coordinating groups of students to perform collaborative distance learning activities. Our approach uses Cooperative Work, Artificial Intelligence and Human-Computer Interaction techniques as well as some ideas from the fields of Pedagogy and Psychology. We have designed a complete, open and generic solution. Our architecture exploits the new information technologies to achieve an effective system for education purposes. It is organised into four levels: Configuration, Experience, Organisation and Reflection. This model has been implemented into a system called DEGREE. In DEGREE, each level of the architecture gives rise to an independent subsystem related to the other ones. The application benefits from the use of shared structured workspaces. The configuration subsystem allows customising the elements that define an experience and a workspace. The experience subsystem gathers the users' contributions to build joint solutions to a given problem. The students' interventions build up a structure based on a generic conversation graph. Moreover, all user actions are registered in order to represent explicitly the complete process for reaching the group solution. Those data are also stored into a common memory, which constitutes the organisation subsystem. The user interventions are studied by the reflection subsystem. This analysis allows us inferring conclusions about the way in which the group works and its attitudes towards collaboration. The inference process takes into account the observer's subjective knowledge. The process of developing both the architecture and the system in parallel has run through a five-pass cycle involving successive stages of prototyping and formative evaluation. At each stage of that process, we have considered the users' feedback for improving the architecture's functionalities as well as the system interface. This approach has allowed us to prove the usability and validity of our proposal.
Resumo:
In a degree course such as Forestry Engineering, the general teaching objectives consist of explaining and helping students to understand the principles of Mechanics. For some time now we have encountered significant difficulties in teaching this subject due to the students' lack of motivation and to their insufficient prior preparation for the topic. If we add to this the discipline's inherent complexity and the students' preconceptions about the subject, these teaching difficulties become considerable. For this reason a series of didactic activities have been introduced sequentially in the teaching of this subject. This work describes the methodology, procedure and results for the action of developing a work project in groups using Descartes software. The results of this experiment can be considered very positive. Some of the critical preconceptions for learning the subject can be corrected, and the tutoring process in the classroom contributes to an improvement in teacherstudent communication. Since this scheme was established, the number of students taking part each academic year has increased, and this is the group with the greatest percentage of passing scores.
Resumo:
The main objective of this article is to focus on the analysis of teaching techniques, ranging from the use of the blackboard and chalk in old traditional classes, using slides and overhead projectors in the eighties and use of presentation software in the nineties, to the video, electronic board and network resources nowadays. Furthermore, all the aforementioned, is viewed under the different mentalities in which the teacher conditions the student using the new teaching technique, improving soft skills but maybe leading either to encouragement or disinterest, and including the lack of educational knowledge consolidation at scientific, technology and specific levels. In the same way, we study the process of adaptation required for teachers, the differences in the processes of information transfer and education towards the student, and even the existence of teachers who are not any longer appealed by their work due which has become much simpler due to new technologies and the greater ease in the development of classes due to the criteria described on the new Grade Programs adopted by the European Higher Education Area. Moreover, it is also intended to understand the evolution of students’ profiles, from the eighties to present time, in order to understand certain attitudes, behaviours, accomplishments and acknowledgements acquired over the semesters within the degree Programs. As an Educational Innovation Group, another key question also arises. What will be the learning techniques in the future?. How these evolving matters will affect both positively and negatively on the mentality, attitude, behaviour, learning, achievement of goals and satisfaction levels of all elements involved in universities’ education? Clearly, this evolution from chalk to the electronic board, the three-dimensional view of our works and their sequence, greatly facilitates the understanding and adaptation later on to the business world, but does not answer to the unknowns regarding the knowledge and the full development of achievement’s indicators in basic skills of a degree. This is the underlying question which steers the roots of the presented research.