7 resultados para class imbalance problems
em Universidad Politécnica de Madrid
Resumo:
A recent study by Pichugin et al. recall the Hemp’s solution for uniform load of 1974, showing that if allowable tensile and compressive stresses are unequal then the Hemp’s arch is optimal provided the ratio of stresses falls within a certain interval. This work is undoubtedly an important pass forward to find an optimal solution for the mathematical problem stated by Hemp. Furthermore, the Authors suggest that their optimal solutions are potentially reasonable from a practical perspective for materials with more allowable compressive stress than tensile one, as this kind of materials used to be not too much expensive. In this paper we profoundly analyse the solutions of the Authors from this practical perspective finding that the original Hemp’s solution —albeit sub-optimal for the mathematical problem— leads to real designs that are more efficient than the theoretic optimal solutions of the Authors.We show that the reasons for this shocking fact has to do with the class of problems considered by Hemp and the Authors.
Resumo:
The paper describes the main features of a technical Recommendation first draft on Seismic Actions on Bridges, promoted by the Spanish Ministry of Public Works (MOPT). Although much more research is needed to clarify the seismic behaviour of the vast class of problems present in port structures the current state of the art allows at least a classificaton of subjects and the establishment of minimum requirements to guide the design. Also the use of more refined methods for specially dangerous situations needs some general guidelines that contribute to mantein the design under reasonable safety margins. The Recommendations of the Spanish MOPT are a first try in those directions.
Resumo:
The paper describes the main features of a Technical Recommendation first draft on Seismic Action on port structures promoted recently by the Spanish Ministry of Public Works (MOPT). Although much more research is needed to clarify the seismic behaviour of the vast class of problems present in port structures the current state of the art allows at least a classification of subjects and the establishment of minimum requirements to guide the design. Also the use of more refined methods for specially dangerous situations needs some general guidelines that contribute to mantein the design under reasonable safety margins. The Recommendations of the Spanish MOPT are a first try in those directions.
Resumo:
Laser Shock Processing (LSP) has been demonstrated as an emerging technique for the induction of RS’s fields in subsurface layers of relatively thick specimens. However, the LSP treatment of relatively thin specimens brings, as an additional consequence, the possible bending in a process of laser shock forming. This effect poses a new class of problems regarding the attainment of specified RS’s depth profiles in the mentioned type of sheets, and, what can be more critical, an overall deformation of the treated component. The analysis of the problem of LSP treatment for induction of tentatively through-thickness RS’s fields for fatigue life enhancement in relatively thin sheets in a way compatible with reduced overall workpiece deformation due to spring-back self-equilibration is envisaged in this paper. The coupled theoretical-experimental predictive approach developed by the authors has been applied to the specification of LSP treatments for achievement of RS's fields tentatively able to retard crack propagation on normalized specimens. A convergence between numerical code results and experimental results coming from direct RS's measurement is presented as a first step for the treatment of the normalized specimens under optimized conditions and verification of the crack retardation properties virtually induced.
Resumo:
As it is well known B.E.M. works efficiently in the treatment of a bread class of potential and elasticity problems. In this paper we present the results of several runs established with linear elements in plane potential theory and treating the importance of singularities and the pattern and size of elements used in the boundary discretization.
Resumo:
En este trabajo se han analizado varios problemas en el contexto de la elasticidad no lineal basándose en modelos constitutivos representativos. En particular, se han analizado problemas relacionados con el fenómeno de perdida de estabilidad asociada con condiciones de contorno en el caso de material reforzados con fibras. Cada problema se ha formulado y se ha analizado por separado en diferentes capítulos. En primer lugar se ha mostrado el análisis del gradiente de deformación discontinuo para un material transversalmente isótropo, en particular, el modelo del material considerado consiste de una base neo-Hookeana isótropa incrustada con fibras de refuerzo direccional caracterizadas con un solo parámetro. La solución de este problema se vincula con instabilidades que dan lugar al mecanismo de fallo conocido como banda de cortante. La perdida de elipticidad de las ecuaciones diferenciales de equilibrio es una condición necesaria para que aparezca este tipo de soluciones y por tanto las inestabilidades asociadas. En segundo lugar se ha analizado una deformación combinada de extensión, inación y torsión de un tubo cilíndrico grueso donde se ha encontrado que la deformación citada anteriormente puede ser controlada solo para determinadas direcciones de las fibras refuerzo. Para entender el comportamiento elástico del tubo considerado se ha ilustrado numéricamente los resultados obtenidos para las direcciones admisibles de las fibras de refuerzo bajo la deformación considerada. En tercer lugar se ha estudiado el caso de un tubo cilíndrico grueso reforzado con dos familias de fibras sometido a cortante en la dirección azimutal para un modelo de refuerzo especial. En este problema se ha encontrado que las inestabilidades que aparecen en el material considerado están asociadas con lo que se llama soluciones múltiples de la ecuación diferencial de equilibrio. Se ha encontrado que el fenómeno de instabilidad ocurre en un estado de deformación previo al estado de deformación donde se pierde la elipticidad de la ecuación diferencial de equilibrio. También se ha demostrado que la condición de perdida de elipticidad y ^W=2 = 0 (la segunda derivada de la función de energía con respecto a la deformación) son dos condiciones necesarias para la existencia de soluciones múltiples. Finalmente, se ha analizado detalladamente en el contexto de elipticidad un problema de un tubo cilíndrico grueso sometido a una deformación combinada en las direcciones helicoidal, axial y radial para distintas geotermias de las fibras de refuerzo . In the present work four main problems have been addressed within the framework of non-linear elasticity based on representative constitutive models. Namely, problems related to the loss of stability phenomena associated with boundary value problems for fibre-reinforced materials. Each of the considered problems is formulated and analysed separately in different chapters. We first start with the analysis of discontinuous deformation gradients for a transversely isotropic material under plane deformation. In particular, the material model is an augmented neo-Hookean base with a simple unidirectional reinforcement characterised by a single parameter. The solution of this problem is related to material instabilities and it is associated with a shear band-type failure mode. The loss of ellipticity of the governing differential equations is a necessary condition for the existence of these material instabilities. The second problem involves a detailed analysis of the combined non-linear extension, inflation and torsion of a thick-walled circular cylindrical tube where it has been found that the aforementioned deformation is controllable only for certain preferred directions of transverse isotropy. Numerical results have been illustrated to understand the elastic behaviour of the tube for the admissible preferred directions under the considered deformation. The third problem deals with the analysis of a doubly fibre-reinforced thickwalled circular cylindrical tube undergoing pure azimuthal shear for a special class of the reinforcing model where multiple non-smooth solutions emerge. The associated instability phenomena are found to occur prior to the point where the nominal stress tensor changes monotonicity in a particular direction. It has been also shown that the loss of ellipticity condition that arises from the equilibrium equation and ^W=2 = 0 (the second derivative of the strain-energy function with respect to the deformation) are equivalent necessary conditions for the emergence of multiple solutions for the considered material. Finally, a detailed analysis in the basis of the loss of ellipticity of the governing differential equations for a combined helical, axial and radial elastic deformations of a fibre-reinforced circular cylindrical tube is carried out.
Resumo:
La familia de algoritmos de Boosting son un tipo de técnicas de clasificación y regresión que han demostrado ser muy eficaces en problemas de Visión Computacional. Tal es el caso de los problemas de detección, de seguimiento o bien de reconocimiento de caras, personas, objetos deformables y acciones. El primer y más popular algoritmo de Boosting, AdaBoost, fue concebido para problemas binarios. Desde entonces, muchas han sido las propuestas que han aparecido con objeto de trasladarlo a otros dominios más generales: multiclase, multilabel, con costes, etc. Nuestro interés se centra en extender AdaBoost al terreno de la clasificación multiclase, considerándolo como un primer paso para posteriores ampliaciones. En la presente tesis proponemos dos algoritmos de Boosting para problemas multiclase basados en nuevas derivaciones del concepto margen. El primero de ellos, PIBoost, está concebido para abordar el problema descomponiéndolo en subproblemas binarios. Por un lado, usamos una codificación vectorial para representar etiquetas y, por otro, utilizamos la función de pérdida exponencial multiclase para evaluar las respuestas. Esta codificación produce un conjunto de valores margen que conllevan un rango de penalizaciones en caso de fallo y recompensas en caso de acierto. La optimización iterativa del modelo genera un proceso de Boosting asimétrico cuyos costes dependen del número de etiquetas separadas por cada clasificador débil. De este modo nuestro algoritmo de Boosting tiene en cuenta el desbalanceo debido a las clases a la hora de construir el clasificador. El resultado es un método bien fundamentado que extiende de manera canónica al AdaBoost original. El segundo algoritmo propuesto, BAdaCost, está concebido para problemas multiclase dotados de una matriz de costes. Motivados por los escasos trabajos dedicados a generalizar AdaBoost al terreno multiclase con costes, hemos propuesto un nuevo concepto de margen que, a su vez, permite derivar una función de pérdida adecuada para evaluar costes. Consideramos nuestro algoritmo como la extensión más canónica de AdaBoost para este tipo de problemas, ya que generaliza a los algoritmos SAMME, Cost-Sensitive AdaBoost y PIBoost. Por otro lado, sugerimos un simple procedimiento para calcular matrices de coste adecuadas para mejorar el rendimiento de Boosting a la hora de abordar problemas estándar y problemas con datos desbalanceados. Una serie de experimentos nos sirven para demostrar la efectividad de ambos métodos frente a otros conocidos algoritmos de Boosting multiclase en sus respectivas áreas. En dichos experimentos se usan bases de datos de referencia en el área de Machine Learning, en primer lugar para minimizar errores y en segundo lugar para minimizar costes. Además, hemos podido aplicar BAdaCost con éxito a un proceso de segmentación, un caso particular de problema con datos desbalanceados. Concluimos justificando el horizonte de futuro que encierra el marco de trabajo que presentamos, tanto por su aplicabilidad como por su flexibilidad teórica. Abstract The family of Boosting algorithms represents a type of classification and regression approach that has shown to be very effective in Computer Vision problems. Such is the case of detection, tracking and recognition of faces, people, deformable objects and actions. The first and most popular algorithm, AdaBoost, was introduced in the context of binary classification. Since then, many works have been proposed to extend it to the more general multi-class, multi-label, costsensitive, etc... domains. Our interest is centered in extending AdaBoost to two problems in the multi-class field, considering it a first step for upcoming generalizations. In this dissertation we propose two Boosting algorithms for multi-class classification based on new generalizations of the concept of margin. The first of them, PIBoost, is conceived to tackle the multi-class problem by solving many binary sub-problems. We use a vectorial codification to represent class labels and a multi-class exponential loss function to evaluate classifier responses. This representation produces a set of margin values that provide a range of penalties for failures and rewards for successes. The stagewise optimization of this model introduces an asymmetric Boosting procedure whose costs depend on the number of classes separated by each weak-learner. In this way the Boosting procedure takes into account class imbalances when building the ensemble. The resulting algorithm is a well grounded method that canonically extends the original AdaBoost. The second algorithm proposed, BAdaCost, is conceived for multi-class problems endowed with a cost matrix. Motivated by the few cost-sensitive extensions of AdaBoost to the multi-class field, we propose a new margin that, in turn, yields a new loss function appropriate for evaluating costs. Since BAdaCost generalizes SAMME, Cost-Sensitive AdaBoost and PIBoost algorithms, we consider our algorithm as a canonical extension of AdaBoost to this kind of problems. We additionally suggest a simple procedure to compute cost matrices that improve the performance of Boosting in standard and unbalanced problems. A set of experiments is carried out to demonstrate the effectiveness of both methods against other relevant Boosting algorithms in their respective areas. In the experiments we resort to benchmark data sets used in the Machine Learning community, firstly for minimizing classification errors and secondly for minimizing costs. In addition, we successfully applied BAdaCost to a segmentation task, a particular problem in presence of imbalanced data. We conclude the thesis justifying the horizon of future improvements encompassed in our framework, due to its applicability and theoretical flexibility.