4 resultados para cingulate gyrus

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systems biology techniques are a topic of recent interest within the neurological field. Computational intelligence (CI) addresses this holistic perspective by means of consensus or ensemble techniques ultimately capable of uncovering new and relevant findings. In this paper, we propose the application of a CI approach based on ensemble Bayesian network classifiers and multivariate feature subset selection to induce probabilistic dependences that could match or unveil biological relationships. The research focuses on the analysis of high-throughput Alzheimer's disease (AD) transcript profiling. The analysis is conducted from two perspectives. First, we compare the expression profiles of hippocampus subregion entorhinal cortex (EC) samples of AD patients and controls. Second, we use the ensemble approach to study four types of samples: EC and dentate gyrus (DG) samples from both patients and controls. Results disclose transcript interaction networks with remarkable structures and genes not directly related to AD by previous studies. The ensemble is able to identify a variety of transcripts that play key roles in other neurological pathologies. Classical statistical assessment by means of non-parametric tests confirms the relevance of the majority of the transcripts. The ensemble approach pinpoints key metabolic mechanisms that could lead to new findings in the pathogenesis and development of AD

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fixation-off sensitivity (FOS) denotes the forms of EEG abnormalities, which are elicited by elimination of central vision or fixation. The phenomenon seems to depend on variables that modulate the alpha rhythm, however, the cerebral mechanisms underlying FOS remain unclear [1]. The scarce previous fMRI findings related to FOS have shown activation in extrastriate cortex [2] and also in frontal areas [3][4]. On the other hand, simultaneous EEG-fMRI technique has been used to assess the relationship between spontaneous power fluctuations of electrical rhythms and associated fMRI signal modulations. These studies have identified that lateral frontoparietal networks show a negative correlation with alpha band in healthy subjects. This neuroanatomical pattern is related to attentional processes and cognitive resources. Moreover, a sub-beta band (17-23 Hz) has been identified with posterior cingulate, temporoparietal junction and dorso-medial prefrontal cortex activations, which correspond to the DMN [5][6].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell’s dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell?s dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed ?500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits.