19 resultados para causal reasoning
em Universidad Politécnica de Madrid
Resumo:
In this paper, we present the use of D-higraphs to perform HAZOP studies. D-higraphs is a formalism that includes in a single model the functional as well as the structural (ontological) components of any given system. A tool to perform a semi-automatic guided HAZOP study on a process plant is presented. The diagnostic system uses an expert system to predict the behavior modeled using D-higraphs. This work is applied to the study of an industrial case and its results are compared with other similar approaches proposed in previous studies. The analysis shows that the proposed methodology fits its purpose enabling causal reasoning that explains causes and consequences derived from deviations, it also fills some of the gaps and drawbacks existing in previous reported HAZOP assistant tools.
Resumo:
In this paper, we introduce B2DI model that extends BDI model to perform Bayesian inference under uncertainty. For scalability and flexibility purposes, Multiply Sectioned Bayesian Network (MSBN) technology has been selected and adapted to BDI agent reasoning. A belief update mechanism has been defined for agents, whose belief models are connected by public shared beliefs, and the certainty of these beliefs is updated based on MSBN. The classical BDI agent architecture has been extended in order to manage uncertainty using Bayesian reasoning. The resulting extended model, so-called B2DI, proposes a new control loop. The proposed B2DI model has been evaluated in a network fault diagnosis scenario. The evaluation has compared this model with two previously developed agent models. The evaluation has been carried out with a real testbed diagnosis scenario using JADEX. As a result, the proposed model exhibits significant improvements in the cost and time required to carry out a reliable diagnosis.
Resumo:
Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications—it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ‘Activity Monitor’ has been designed and implemented: a personal health-persuasive application that provides feedback on the user’s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user’s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.d
Resumo:
This article proposes a MAS architecture for network diagnosis under uncertainty. Network diagnosis is divided into two inference processes: hypothesis generation and hypothesis confirmation. The first process is distributed among several agents based on a MSBN, while the second one is carried out by agents using semantic reasoning. A diagnosis ontology has been defined in order to combine both inference processes. To drive the deliberation process, dynamic data about the influence of observations are taken during diagnosis process. In order to achieve quick and reliable diagnoses, this influence is used to choose the best action to perform. This approach has been evaluated in a P2P video streaming scenario. Computational and time improvements are highlight as conclusions.
Resumo:
Many of the emerging telecom services make use of Outer Edge Networks, in particular Home Area Networks. The configuration and maintenance of such services may not be under full control of the telecom operator which still needs to guarantee the service quality experienced by the consumer. Diagnosing service faults in these scenarios becomes especially difficult since there may be not full visibility between different domains. This paper describes the fault diagnosis solution developed in the MAGNETO project, based on the application of Bayesian Inference to deal with the uncertainty. It also takes advantage of a distributed framework to deploy diagnosis components in the different domains and network elements involved, spanning both the telecom operator and the Outer Edge networks. In addition, MAGNETO features self-learning capabilities to automatically improve diagnosis knowledge over time and a partition mechanism that allows breaking down the overall diagnosis knowledge into smaller subsets. The MAGNETO solution has been prototyped and adapted to a particular outer edge scenario, and has been further validated on a real testbed. Evaluation of the results shows the potential of our approach to deal with fault management of outer edge networks.
Resumo:
Although the computational complexity of the logic underlying the standard OWL 2 for the Web Ontology Language (OWL) appears discouraging for real applications, several contributions have shown that reasoning with OWL ontologies is feasible in practice. It turns out that reasoning in practice is often far less complex than is suggested by the established theoretical complexity bound, which reflects the worstcase scenario. State-of-the reasoners like FACT++, HERMIT, PELLET and RACER have demonstrated that, even with fairly expressive fragments of OWL 2, acceptable performances can be achieved. However, it is still not well understood why reasoning is feasible in practice and it is rather unclear how to study this problem. In this paper, we suggest first steps that in our opinion could lead to a better understanding of practical complexity. We also provide and discuss some initial empirical results with HERMIT on prominent ontologies
Resumo:
In the presence of a river flood, operators in charge of control must take decisions based on imperfect and incomplete sources of information (e.g., data provided by a limited number sensors) and partial knowledge about the structure and behavior of the river basin. This is a case of reasoning about a complex dynamic system with uncertainty and real-time constraints where bayesian networks can be used to provide an effective support. In this paper we describe a solution with spatio-temporal bayesian networks to be used in a context of emergencies produced by river floods. In the paper we describe first a set of types of causal relations for hydrologic processes with spatial and temporal references to represent the dynamics of the river basin. Then we describe how this was included in a computer system called SAIDA to provide assistance to operators in charge of control in a river basin. Finally the paper shows experimental results about the performance of the model.
Resumo:
Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications?it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ?Activity Monitor? has been designed and implemented: a personal health-persuasive application that provides feedback on the user?s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user?s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.
Resumo:
Las arquitecturas jerárquicas de comunicación causal se presentan como una alternativa habitual para reducir el elevado tamaño de la información de control causal a enviar en cada mensaje, cuando la comunicación se realiza entre un subconjunto de procesos que pertenecen a un grupo muy numeroso. Sin embargo, en estas arquitecturas, los nodos intermedios de la jerarquía padecen un efecto indeseable denominado efecto convoy. Estos nodos intermedios tienden a generar ráfagas de envíos que sobrecargan tanto a los nodos de los niveles inferiores de la jerarquía como a la red, provocando pérdidas de mensajes y periodos entre ráfagas de infrautilización de la red. Este artículo presenta un servicio causal bidireccional sin contención que, aplicado a los nodos intermedios de la jerarquía, soluciona el efecto convoy. Este servicio causal sin contención entrega a la capa de aplicación y envía al sistema un mensaje sin esperar la entrega o el envío previo de mensajes que constituyen la historia causal del primero, por lo que evita las ráfagas de entrega y de envío de mensajes. La entrega de un mensaje va acompañada de un identificador causal, que es un número natural que indica el número de orden de ese mensaje en la secuencia causal total. El envío de un mensaje supone construir un vector causal válido a partir de un identiificador causal, que permita ordenar dicho mensaje en orden causal en el proceso receptor.
Resumo:
We present a computing model based on the DNA strand displacement technique which performs Bayesian inference. The model will take single stranded DNA as input data, representing the presence or absence of a specific molecular signal (evidence). The program logic encodes the prior probability of a disease and the conditional probability of a signal given the disease playing with a set of different DNA complexes and their ratios. When the input and program molecules interact, they release a different pair of single stranded DNA species whose relative proportion represents the application of Bayes? Law: the conditional probability of the disease given the signal. The models presented in this paper can empower the application of probabilistic reasoning in genetic diagnosis in vitro.
Resumo:
This paper describes a mobile-based system to interact with objects in smart spaces, where the offer of resources may be extensive. The underlying idea is to use the augmentation capabilities of the mobile device to enable it as user-object mediator. In particular, the paper details how to build an attitude-based reasoning strategy that facilitates user-object interaction and resource filtering. The strategy prioritizes the available resources depending on the spatial history of the user, his real-time location and orientation and, finally, his active touch and focus interactions with the virtual overlay. The proposed reasoning method has been partially validated through a prototype that handles 2D and 3D visualization interfaces. This framework makes possible to develop in practice the IoT paradigm, augmenting the objects without physically modifying them.
Resumo:
In this paper, an innovative approach to perform distributed Bayesian inference using a multi-agent architecture is presented. The final goal is dealing with uncertainty in network diagnosis, but the solution can be of applied in other fields. The validation testbed has been a P2P streaming video service. An assessment of the work is presented, in order to show its advantages when it is compared with traditional manual processes and other previous systems.
Resumo:
This work evaluates a spline-based smoothing method applied to the output of a glucose predictor. Methods:Our on-line prediction algorithm is based on a neural network model (NNM). We trained/validated the NNM with a prediction horizon of 30 minutes using 39/54 profiles of patients monitored with the Guardian® Real-Time continuous glucose monitoring system The NNM output is smoothed by fitting a causal cubic spline. The assessment parameters are the error (RMSE), mean delay (MD) and the high-frequency noise (HFCrms). The HFCrms is the root-mean-square values of the high-frequency components isolated with a zero-delay non-causal filter. HFCrms is 2.90±1.37 (mg/dl) for the original profiles.
Resumo:
La seguridad verificada es una metodología para demostrar propiedades de seguridad de los sistemas informáticos que se destaca por las altas garantías de corrección que provee. Los sistemas informáticos se modelan como programas probabilísticos y para probar que verifican una determinada propiedad de seguridad se utilizan técnicas rigurosas basadas en modelos matemáticos de los programas. En particular, la seguridad verificada promueve el uso de demostradores de teoremas interactivos o automáticos para construir demostraciones completamente formales cuya corrección es certificada mecánicamente (por ordenador). La seguridad verificada demostró ser una técnica muy efectiva para razonar sobre diversas nociones de seguridad en el área de criptografía. Sin embargo, no ha podido cubrir un importante conjunto de nociones de seguridad “aproximada”. La característica distintiva de estas nociones de seguridad es que se expresan como una condición de “similitud” entre las distribuciones de salida de dos programas probabilísticos y esta similitud se cuantifica usando alguna noción de distancia entre distribuciones de probabilidad. Este conjunto incluye destacadas nociones de seguridad de diversas áreas como la minería de datos privados, el análisis de flujo de información y la criptografía. Ejemplos representativos de estas nociones de seguridad son la indiferenciabilidad, que permite reemplazar un componente idealizado de un sistema por una implementación concreta (sin alterar significativamente sus propiedades de seguridad), o la privacidad diferencial, una noción de privacidad que ha recibido mucha atención en los últimos años y tiene como objetivo evitar la publicación datos confidenciales en la minería de datos. La falta de técnicas rigurosas que permitan verificar formalmente este tipo de propiedades constituye un notable problema abierto que tiene que ser abordado. En esta tesis introducimos varias lógicas de programa quantitativas para razonar sobre esta clase de propiedades de seguridad. Nuestra principal contribución teórica es una versión quantitativa de una lógica de Hoare relacional para programas probabilísticos. Las pruebas de correción de estas lógicas son completamente formalizadas en el asistente de pruebas Coq. Desarrollamos, además, una herramienta para razonar sobre propiedades de programas a través de estas lógicas extendiendo CertiCrypt, un framework para verificar pruebas de criptografía en Coq. Confirmamos la efectividad y aplicabilidad de nuestra metodología construyendo pruebas certificadas por ordendor de varios sistemas cuyo análisis estaba fuera del alcance de la seguridad verificada. Esto incluye, entre otros, una meta-construcción para diseñar funciones de hash “seguras” sobre curvas elípticas y algoritmos diferencialmente privados para varios problemas de optimización combinatoria de la literatura reciente. ABSTRACT The verified security methodology is an emerging approach to build high assurance proofs about security properties of computer systems. Computer systems are modeled as probabilistic programs and one relies on rigorous program semantics techniques to prove that they comply with a given security goal. In particular, it advocates the use of interactive theorem provers or automated provers to build fully formal machine-checked versions of these security proofs. The verified security methodology has proved successful in modeling and reasoning about several standard security notions in the area of cryptography. However, it has fallen short of covering an important class of approximate, quantitative security notions. The distinguishing characteristic of this class of security notions is that they are stated as a “similarity” condition between the output distributions of two probabilistic programs, and this similarity is quantified using some notion of distance between probability distributions. This class comprises prominent security notions from multiple areas such as private data analysis, information flow analysis and cryptography. These include, for instance, indifferentiability, which enables securely replacing an idealized component of system with a concrete implementation, and differential privacy, a notion of privacy-preserving data mining that has received a great deal of attention in the last few years. The lack of rigorous techniques for verifying these properties is thus an important problem that needs to be addressed. In this dissertation we introduce several quantitative program logics to reason about this class of security notions. Our main theoretical contribution is, in particular, a quantitative variant of a full-fledged relational Hoare logic for probabilistic programs. The soundness of these logics is fully formalized in the Coq proof-assistant and tool support is also available through an extension of CertiCrypt, a framework to verify cryptographic proofs in Coq. We validate the applicability of our approach by building fully machine-checked proofs for several systems that were out of the reach of the verified security methodology. These comprise, among others, a construction to build “safe” hash functions into elliptic curves and differentially private algorithms for several combinatorial optimization problems from the recent literature.
Resumo:
Enabling Subject Matter Experts (SMEs) to formulate knowledge without the intervention of Knowledge Engineers (KEs) requires providing SMEs with methods and tools that abstract the underlying knowledge representation and allow them to focus on modeling activities. Bridging the gap between SME-authored models and their representation is challenging, especially in the case of complex knowledge types like processes, where aspects like frame management, data, and control flow need to be addressed. In this paper, we describe how SME-authored process models can be provided with an operational semantics and grounded in a knowledge representation language like F-logic in order to support process-related reasoning. The main results of this work include a formalism for process representation and a mechanism for automatically translating process diagrams into executable code following such formalism. From all the process models authored by SMEs during evaluation 82% were well-formed, all of which executed correctly. Additionally, the two optimizations applied to the code generation mechanism produced a performance improvement at reasoning time of 25% and 30% with respect to the base case, respectively.