5 resultados para catch databases
em Universidad Politécnica de Madrid
Resumo:
Geographic Information Systems are developed to handle enormous volumes of data and are equipped with numerous functionalities intended to capture, store, edit, organise, process and analyse or represent the geographically referenced information. On the other hand, industrial simulators for driver training are real-time applications that require a virtual environment, either geospecific, geogeneric or a combination of the two, over which the simulation programs will be run. In the final instance, this environment constitutes a geographic location with its specific characteristics of geometry, appearance, functionality, topography, etc. The set of elements that enables the virtual simulation environment to be created and in which the simulator user can move, is usually called the Visual Database (VDB). The main idea behind the work being developed approaches a topic that is of major interest in the field of industrial training simulators, which is the problem of analysing, structuring and describing the virtual environments to be used in large driving simulators. This paper sets out a methodology that uses the capabilities and benefits of Geographic Information Systems for organising, optimising and managing the visual Database of the simulator and for generally enhancing the quality and performance of the simulator.
Resumo:
The need to refine models for best-estimate calculations, based on good-quality experimental data, has been expressed in many recent meetings in the field of nuclear applications. The modeling needs arising in this respect should not be limited to the currently available macroscopic methods but should be extended to next-generation analysis techniques that focus on more microscopic processes. One of the most valuable databases identified for the thermalhydraulics modeling was developed by the Nuclear Power Engineering Corporation (NUPEC), Japan. From 1987 to 1995, NUPEC performed steady-state and transient critical power and departure from nucleate boiling (DNB) test series based on the equivalent full-size mock-ups. Considering the reliability not only of the measured data, but also other relevant parameters such as the system pressure, inlet sub-cooling and rod surface temperature, these test series supplied the first substantial database for the development of truly mechanistic and consistent models for boiling transition and critical heat flux. Over the last few years the Pennsylvania State University (PSU) under the sponsorship of the U.S. Nuclear Regulatory Commission (NRC) has prepared, organized, conducted and summarized the OECD/NRC Full-size Fine-mesh Bundle Tests (BFBT) Benchmark. The international benchmark activities have been conducted in cooperation with the Nuclear Energy Agency/Organization for Economic Co-operation and Development (NEA/OECD) and Japan Nuclear Energy Safety (JNES) organization, Japan. Consequently, the JNES has made available the Boiling Water Reactor (BWR) NUPEC database for the purposes of the benchmark. Based on the success of the OECD/NRC BFBT benchmark the JNES has decided to release also the data based on the NUPEC Pressurized Water Reactor (PWR) subchannel and bundle tests for another follow-up international benchmark entitled OECD/NRC PWR Subchannel and Bundle Tests (PSBT) benchmark. This paper presents an application of the joint Penn State University/Technical University of Madrid (UPM) version of the well-known subchannel code COBRA-TF, namely CTF, to the critical power and departure from nucleate boiling (DNB) exercises of the OECD/NRC BFBT and PSBT benchmarks
Resumo:
Over the last few years, the Pennsylvania State University (PSU) under the sponsorship of the US Nuclear Regulatory Commission (NRC) has prepared, organized, conducted, and summarized two international benchmarks based on the NUPEC data—the OECD/NRC Full-Size Fine-Mesh Bundle Test (BFBT) Benchmark and the OECD/NRC PWR Sub-Channel and Bundle Test (PSBT) Benchmark. The benchmarks’ activities have been conducted in cooperation with the Nuclear Energy Agency/Organization for Economic Co-operation and Development (NEA/OECD) and the Japan Nuclear Energy Safety (JNES) Organization. This paper presents an application of the joint Penn State University/Technical University of Madrid (UPM) version of the well-known sub-channel code COBRA-TF (Coolant Boiling in Rod Array-Two Fluid), namely, CTF, to the steady state critical power and departure from nucleate boiling (DNB) exercises of the OECD/NRC BFBT and PSBT benchmarks. The goal is two-fold: firstly, to assess these models and to examine their strengths and weaknesses; and secondly, to identify the areas for improvement.
Resumo:
A la hora de afrontar un proyecto de investigación, no basta con una vigilancia tradicional del entorno. Ya que debido a lo cambiante del mundo, a la globalización, a lo rápido que se desarrollan nuevas tecnologías y productos es preciso realizar un proceso sistemático que permita a las organizaciones o empresas anticiparse a los cambios tecnológicos. En este contexto, el diseño de metodologías basadas en la Vigilancia Tecnológica (VT) permite gestionar la actividad innovadora de organizaciones o empresas facilitando el proceso de generación de ideas para el desarrollo de productos o servicios. Es por ello que en este Proyecto de Fin de Grado se ha diseñado una estrategia para aplicar metodologías de Vigilancia Tecnológica aplicadas a un proyecto de I+D que estudia las Interfaces Naturales de Usuario (NUI). Para ello se ha partido de la metodología de trabajo basada en el proceso de Vigilancia Tecnológica e Inteligencia Competitiva del proyecto CETISME, identificando claramente cada una de las fases que lo componen: identificación de objetivos, selección de las fuentes de información, búsqueda y almacenamiento de la información, análisis de la información y por último validación de la información que concluye con la creación de informes de Vigilancia Tecnológica. Por lo tanto, para cada una de las fases que componen lo que comúnmente se llama el ciclo de la vigilancia, se ha explicado en primer lugar en qué consisten, que estrategias a seguir son las más adecuadas así como la manera de llevarlas a cabo, y por último, si fuera necesario, qué herramientas (desde bases de datos a software) son necesarias o son de utilidad para llevar a cabo el proceso y optimizarlo. De esta manera, como se verá a lo largo de este documento, la aplicación de dicha metodología permitirá a las organizaciones o empresas obtener situaciones ventajosas a la hora de innovar, captar oportunidades o detectar amenazas, identificar competidores o alianzas potenciales, entre otros. ABSTRACT. When taking over a research project, a traditional surveillance of the environment is not enough. Mainly due to the changing the world, to the globalization, to how fast new technologies and products are developed, is necessary to make a systematic process that enables organizations or companies anticipate to technological changes. In this context, the design of methodologies based on the Technology Watch (TW) allows managing the innovative activity of organizations or companies facilitating the process of generating ideas for products or services development. For this reason, in this Thesis a strategy for applying Technological Watch methodologies applied to a R&D project studying Natural User Interfaces (NUI) has been designed. To achieve this goal, the starting point was the CETISME project methodologies, which are based on the Technology Watch and the Competitive Intelligence process, clearly identifying each of the phases that compose it: identification of objectives, selection of the information sources, storage, search and analysis of the information, and finally validating the information that concludes with the creation of Technological Watch reports. Therefore, for each of the phases composing what is commonly known as the monitoring cycle, it has been explained in first place what they consist of, what strategies are more adequate as well as how they should be implemented, and finally, if necessary, what tools (from databases to software) are needed or are useful for managing the process and optimize it. Thus, as discussed throughout this document, the application of said methodology will allow organizations or companies to obtain advantageous situations when it comes to innovate, catch opportunities or detect threats, to identify competitors or potential alliances, among others.
Resumo:
El objetivo principal de este proyecto ha sido introducir aprendizaje automático en la aplicación FleSe. FleSe es una aplicación web que permite realizar consultas borrosas sobre bases de datos nítidos. Para llevar a cabo esta función la aplicación utiliza unos criterios para definir los conceptos borrosos usados para llevar a cabo las consultas. FleSe además permite que el usuario cambie estas personalizaciones. Es aquí donde introduciremos el aprendizaje automático, de tal manera que los criterios por defecto cambien y aprendan en función de las personalizaciones que van realizando los usuarios. Los objetivos secundarios han sido familiarizarse con el desarrollo y diseño web, al igual que recordar y ampliar el conocimiento sobre lógica borrosa y el lenguaje de programación lógica Ciao-Prolog. A lo largo de la realización del proyecto y sobre todo después del estudio de los resultados se demuestra que la agrupación de los usuarios marca la diferencia con la última versión de la aplicación. Esto se basa en la siguiente idea, podemos usar un algoritmo de aprendizaje automático sobre las personalizaciones de los criterios de todos los usuarios, pero la gran diversidad de opiniones de los usuarios puede llevar al algoritmo a concluir criterios erróneos o no representativos. Para solucionar este problema agrupamos a los usuarios intentando que cada grupo tengan la misma opinión o mismo criterio sobre el concepto. Y después de haber realizado las agrupaciones usar el algoritmo de aprendizaje automático para precisar el criterio por defecto de cada grupo de usuarios. Como posibles mejoras para futuras versiones de la aplicación FleSe sería un mejor control y manejo del ejecutable plserver. Este archivo se encarga de permitir a la aplicación web usar el lenguaje de programación lógica Ciao-Prolog para llevar a cabo la lógica borrosa relacionada con las consultas. Uno de los problemas más importantes que ofrece plserver es que bloquea el hilo de ejecución al intentar cargar un archivo con errores y en caso de ocurrir repetidas veces bloquea todas las peticiones siguientes bloqueando la aplicación. Pensando en los usuarios y posibles clientes, sería también importante permitir que FleSe trabajase con bases de datos de SQL en vez de almacenar la base de datos en los archivos de Prolog. Otra posible mejora basarse en distintas características a la hora de agrupar los usuarios dependiendo de los conceptos borrosos que se van ha utilizar en las consultas. Con esto se conseguiría que para cada concepto borroso, se generasen distintos grupos de usuarios, los cuales tendrían opiniones distintas sobre el concepto en cuestión. Así se generarían criterios por defecto más precisos para cada usuario y cada concepto borroso.---ABSTRACT---The main objective of this project has been to introduce machine learning in the application FleSe. FleSe is a web application that makes fuzzy queries over databases with precise information, using defined criteria to define the fuzzy concepts used by the queries. The application allows the users to change and custom these criteria. On this point is where the machine learning would be introduced, so FleSe learn from every new user customization of the criteria in order to generate a new default value of it. The secondary objectives of this project were get familiar with web development and web design in order to understand the how the application works, as well as refresh and improve the knowledge about fuzzy logic and logic programing. During the realization of the project and after the study of the results, I realized that clustering the users in different groups makes the difference between this new version of the application and the previous. This conclusion follows the next idea, we can use an algorithm to introduce machine learning over the criteria that people have, but the problem is the diversity of opinions and judgements that exists, making impossible to generate a unique correct criteria for all the users. In order to solve this problem, before using the machine learning methods, we cluster the users in order to make groups that have the same opinion, and afterwards, use the machine learning methods to precise the default criteria of each users group. The future improvements that could be important for the next versions of FleSe will be to control better the behaviour of the plserver file, that cost many troubles at the beginning of this project and it also generate important errors in the previous version. The file plserver allows the web application to use Ciao-Prolog, a logic programming language that control and manage all the fuzzy logic. One of the main problems with plserver is that when the user uploads a file with errors, it will block the thread and when this happens multiple times it will start blocking all the requests. Oriented to the customer, would be important as well to allow FleSe to manage and work with SQL databases instead of store the data in the Prolog files. Another possible improvement would that the cluster algorithm would be based on different criteria depending on the fuzzy concepts that the selected Prolog file have. This will generate more meaningful clusters, and therefore, the default criteria offered to the users will be more precise.