8 resultados para case system

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

onceptual design phase is partially supported by product lifecycle management/computer-aided design (PLM/CAD) systems causing discontinuity of the design information flow: customer needs — functional requirements — key characteristics — design parameters (DPs) — geometric DPs. Aiming to address this issue, it is proposed a knowledge-based approach is proposed to integrate quality function deployment, failure mode and effects analysis, and axiomatic design into a commercial PLM/CAD system. A case study, main subject of this article, was carried out to validate the proposed process, to evaluate, by a pilot development, how the commercial PLM/CAD modules and application programming interface could support the information flow, and based on the pilot scheme results to propose a full development framework.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Massive integration of renewable energy sources in electrical power systems of remote islands is a subject of current interest. The increasing cost of fossil fuels, transport costs to isolated sites and environmental concerns constitute a serious drawback to the use of conventional fossil fuel plants. In a weak electrical grid, as it is typical on an island, if a large amount of conventional generation is substituted by renewable energy sources, power system safety and stability can be compromised, in the case of large grid disturbances. In this work, a model for transient stability analysis of an isolated electrical grid exclusively fed from a combination of renewable energy sources has been studied. This new generation model will be installed in El Hierro Island, in Spain. Additionally, an operation strategy to coordinate the generation units (wind, hydro) is also established. Attention is given to the assessment of inertial energy and reactive current to guarantee power system stability against large disturbances. The effectiveness of the proposed strategy is shown by means of simulation results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Renewable energy sources are believed to reduce drastically greenhouse gas emissions that would otherwise be generated from fossil fuels used to generate electricity. This implies that a unit of renewable energy will replace a unit of fossil-fuel, with its CO2 emissions, on an equivalent basis (with no other effects on the grid). But, the fuel economy and emissions in the existing power systems are not proportional with the electricity production of intermittent sources due to cycling of the fossil fuel plants that make up the balance of the grid (i.e. changing the power output makes thermal units to operate less efficiently). This study focuses in the interactions between wind generation and thermal plants cycling, by establishing the levels of extra fuel use caused by decreased efficiencies of fossil back-up for wind electricity in Spain. We analyze the production of all thermal plants in 2011, studying different scenarios where wind penetration causes major deviations in programming, while we define a procedure for quantifying the carbon reductions by using emission factors and efficiency curves from the existing installations. The objectives are to discuss the real contributions of renewable energies to the environmental targets as well as suggest alternatives that would improve the reliability of future power systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Partido Stream is a small torrential course that flows into the marsh of the Doñana National Park, an area that was declared a World Heritage Site in 1994. Before 1981, floods occurred, and the stream overflowed onto a floodplain. As an old alluvial fan, the floodplain has its singular orography and functionality. Fromthe floodplain, several drainage channels, locally called caño, discharged into themarsh. The Partido Streamhad themorphology of a caño and covered approximately 8 km from the old fan to the marsh. The stream was straightened and channelised in 1981 to cultivate the old fan. This resulted in floods that were concentrated between the banks in the following years, which caused the depth of water and the shear stress to increase, thus, scouring the river bed and river banks. In this case, the eroded materials were carried towards the marsh where a new alluvial fan evolved. Control measures on the old fan were implemented in 2006 to stop the development of the new alluvial fan downstream over the marsh. Thus, the stream would partially recover its original behaviour that it had before channelisation, moving forwards in a new, balanced state. The present study describes the geomorphological evolution that channelisation has caused since 1981 and the later slow process of recovery of the original hydraulic-sedimentation regime since 2006. Additionally, it deepens the understanding of the original hydraulic behaviour of the stream, combining field data and 2D simulations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report analyzes the basis of hydrogen and power integration strategies, by using water electrolysis processes as a means of flexible energy storage at large scales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the framework of the ITER Control Breakdown Structure (CBS), Plant System Instrumentation & Control (I&C) defines the hardware and software required to control one or more plant systems [1]. For diagnostics, most of the complex Plant System I&C are to be delivered by ITER Domestic Agencies (DAs). As an example for the DAs, ITER Organization (IO) has developed several use cases for diagnostics Plant System I&C that fully comply with guidelines presented in the Plant Control Design Handbook (PCDH) [2]. One such use case is for neutron diagnostics, specifically the Fission Chamber (FC), which is responsible for delivering time-resolved measurements of neutron source strength and fusion power to aid in assessing the functional performance of ITER [3]. ITER will deploy four Fission Chamber units, each consisting of three individual FC detectors. Two of these detectors contain Uranium 235 for Neutron detection, while a third "dummy" detector will provide gamma and noise detection. The neutron flux from each MFC is measured by the three methods: . Counting Mode: measures the number of individual pulses and their location in the record. Pulse parameters (threshold and width) are user configurable. . Campbelling Mode (Mean Square Voltage): measures the RMS deviation in signal amplitude from its average value. .Current Mode: integrates the signal amplitude over the measurement period

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract:The aim of this paper is to review the literature on voting systems based on Condorcet and Borda. We compared and classified them. Also we referred to some strengths and weaknesses of voting systems and finally in a case study, we made use of the Borda voting system for collective decision making in the Salonga National Park in the Democratic Republic of Congo. Resumen: el objetivo de este trabajo es hacer una revisión bibliográfica de los sistemas de votación basados en Condorcet y Borda. Se ha comparado y clasificado los mismos. Así mismo se ha hecho referencia a algunas debilidades y fortalezas de los sistemas de votación y por último en un caso de estudio, se ha hecho uso del sistema de votación de Borda para la toma de decisión colectiva en el Parque Nacional de Salonga en la República Democrática del Congo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report analyzes the basis of hydrogen and power integration strategies, by using water electrolysis processes as a means of flexible energy storage at large scales. It is a prospective study, where the scope is to describe the characteristics of current power systems (like the generation technologies, load curves and grid constraints), and define future scenarios of hydrogen for balancing the electrical grids, considering the efficiency, economy and easiness of operations. We focus in the "Spanish case", which is a good example for planning the transition from a power system holding large reserve capacities, high penetration of renewable energies and limited interconnections, to a more sustainable energy system being capable to optimize the volumes, the regulation modes, the utilization ratios and the impacts of the installations. Thus, we explore a novel aspect of the "hydrogen economy" which is based in the potentials of existing power systems and the properties of hydrogen as energy carrier, by considering the electricity generation and demand globally and determining the optimal size and operation of the hydrogen production processes along the country; e.g. the cost production of hydrogen becomes viable for a base-load scenario with 58 TWh/year of power surplus at 0.025 V/kWh, and large number electrolyzer plants (50 MW) running in variable mode (1-12 kA/m2)