8 resultados para carrying
em Universidad Politécnica de Madrid
Resumo:
Proof-Carrying Code (PCC) is a general approach to mobile code safety in which programs are augmented with a certificate (or proof). The intended benefit is that the program consumer can locally validate the certificate w.r.t. the "untrustcd" program by means of a certificate checker a process which should be much simpler, efficient, and automatic than generating the original proof. The practical uptake of PCC greatly depends on the existence of a variety of enabling technologies which allow both proving programs correct and replacing a costly verification process by an efficient checking proceduri on th( consumer side. In this work we propose Abstraction- Carrying Code (ACC), a novel approach which uses abstract interpretation as enabling technology. We argue that the large body of applications of abstract interpretation to program verification is amenable to the overall PCC scheme. In particular, we rely on an expressive class of safely policies which can be defined over different abstract domains. We use an abstraction (or abstract model) of the program computed by standard static analyzers as a certificate. The validity of the abstraction on ihe consumer side is checked in a single pass by a very efficient and specialized abstract-interpreter. We believe that ACC brings the expressiveness, flexibility and automation which is inherent in abstract interpretation techniques to the area of mobile code safety.
Resumo:
Abstraction-Carrying Code (ACC) has recently been proposed as a framework for mobile code safety in which the code supplier provides a program together with an abstraction whose validity entails compliance with a predefined safety policy. The abstraction plays thus the role of safety certifícate and its generation is carried out automatically by a fixed-point analyzer. The advantage of providing a (fixedpoint) abstraction to the code consumer is that its validity is checked in a single pass of an abstract interpretation-based checker. A main challenge is to reduce the size of certificates as much as possible while at the same time not increasing checking time. We introduce the notion of reduced certifícate which characterizes the subset of the abstraction which a checker needs in order to validate (and re-construct) the full certifícate in a single pass. Based on this notion, we instrument a generic analysis algorithm with the necessary extensions in order to identify the information relevant to the checker. We also provide a correct checking algorithm together with sufficient conditions for ensuring its completeness. The experimental results within the CiaoPP system show that our proposal is able to greatly reduce the size of certificates in practice.
Resumo:
Proof-Carrying Code (PCC) is a general approach to mobile code safety in which programs are augmented with a certifícate (or proof). The practical uptake of PCC greatly depends on the existence of a variety of enabling technologies which allow both to prove programs correct and to replace a costly verification process by an efñcient checking procedure on the consumer side. In this work we propose Abstraction-Carrying Code (ACC), a novel approach which uses abstract interpretation as enabling technology. We argüe that the large body of applications of abstract interpretation to program verification is amenable to the overall PCC scheme. In particular, we rely on an expressive class of safety policies which can be defined over different abstract domains. We use an abstraction (or abstract model) of the program computed by standard static analyzers as a certifícate. The validity of the abstraction on the consumer side is checked in a single-pass by a very efficient and specialized abstract-interpreter. We believe that ACC brings the expressiveness, flexibility and automation which is inherent in abstract interpretation techniques to the área of mobile code safety. We have implemented and benchmarked ACC within the Ciao system preprocessor. The experimental results show that the checking phase is indeed faster than the proof generation phase, and that the sizes of certificates are reasonable.
Resumo:
Abstraction-Carrying Code (ACC) is a framework for mobile code safety in which the code supplier provides a program together with an abstraction (or abstract model of the program) whose validity entails compliance with a predefined safety policy. The abstraction plays thus the role of safety certificate and its generation is carried out automatically by a fixed-point analyzer. The advantage of providing a (fixed-point) abstraction to the code consumer is that its validity is checked in a single pass (i.e., one iteration) of an abstract interpretation-based checker. A main challenge to make ACC useful in practice is to reduce the size of certificates as much as possible, while at the same time not increasing checking time. Intuitively, we only include in the certificate the information which the checker is unable to reproduce without iterating. We introduce the notion of reduced certifícate which characterizes the subset of the abstraction which a checker needs in order to validate (and re-construct) the full certificate in a single pass. Based on this notion, we show how to instrument a generic analysis algorithm with the necessary extensions in order to identify the information relevant to the checker.
Resumo:
Proof-Carrying Code (PCC) is a general approach to mobile code safety in which the code supplier augments the program with a certifícate (or proof). The intended benefit is that the program consumer can locally validate the certifícate w.r.t. the "untrusted" program by means of a certifícate checker—a process which should be much simpler, eíñcient, and automatic than generating the original proof. Abstraction Carrying Code (ACC) is an enabling technology for PCC in which an abstract model of the program plays the role of certifícate. The generation of the certifícate, Le., the abstraction, is automatically carried out by an abstract interpretation-based analysis engine, which is parametric w.r.t. different abstract domains. While the analyzer on the producer side typically has to compute a semantic fixpoint in a complex, iterative process, on the receiver it is only necessary to check that the certifícate is indeed a fixpoint of the abstract semantics equations representing the program. This is done in a single pass in a much more efficient process. ACC addresses the fundamental issues in PCC and opens the door to the applicability of the large body of frameworks and domains based on abstract interpretation as enabling technology for PCC. We present an overview of ACC and we describe in a tutorial fashion an application to the problem of resource-aware security in mobile code. Essentially the information computed by a cost analyzer is used to genérate cost certificates which attest a safe and efficient use of a mobile code. A receiving side can then reject code which brings cost certificates (which it cannot validate or) which have too large cost requirements in terms of computing resources (in time and/or space) and accept mobile code which meets the established requirements.
Resumo:
Abstraction-Carrying Code (ACC) has recently been proposed as a framework for mobile code safety in which the code supplier provides a program together with an abstraction whose validity entails compliance with a predefined safety policy. The abstraction plays thus the role of safety certifícate and its generation is carried out automatically by a fixed-point analyzer. The advantage of providing a (fixedpoint) abstraction to the code consumer is that its validity is checked in a single pass of an abstract interpretation-based checker. A main challenge is to reduce the size of certificates as much as possible while at the same time not increasing checking time. In this paper, we first introduce the notion of reduced certifícate which characterizes the subset of the abstraction which a checker needs in order to validate (and re-construct) the full certifícate in a single pass. Based on this notion, we then instrument a generic analysis algorithm with the necessary extensions in order to identify the information relevant to the checker.
Resumo:
Abstraction-Carrying Code (ACC) has recently been proposed as a framework for mobile code safety in which the code supplier provides a program together with an abstraction (or abstract model of the program) whose validity entails compliance with a predefined safety policy. The abstraction plays thus the role of safety certifícate and its generation is carried out automatically by a fixed-point analyzer. The advantage of providing a (fixed-point) abstraction to the code consumer is that its validity is checked in a single pass (i.e., one iteration) of an abstract interpretation-based checker. A main challenge to make ACC useful in practice is to reduce the size of certificates as much as possible while at the same time not increasing checking time. The intuitive idea is to only include in the certifícate information that the checker is unable to reproduce without iterating. We introduce the notion of reduced certifícate which characterizes the subset of the abstraction which a checker needs in order to validate (and re-construct) the full certifícate in a single pass. Based on this notion, we instrument a generic analysis algorithm with the necessary extensions in order to identify information which can be reconstructed by the single-pass checker. Finally, we study what the effects of reduced certificates are on the correctness and completeness of the checking process. We provide a correct checking algorithm together with sufficient conditions for ensuring its completeness. Our ideas are illustrated through a running example, implemented in the context of constraint logic programs, which shows that our approach improves state-of-the-art techniques for reducing the size of certificates.
Resumo:
Abstraction-Carrying Code (ACC) has recently been proposed as a framework for mobile code safety in which the code supplier provides a program together with an abstraction (or abstract model of the program) whose validity entails compliance with a predefined safety policy. The abstraction plays thus the role of safety certificate and its generation is carried out automatically by a fixpoint analyzer. The advantage of providing a (fixpoint) abstraction to the code consumer is that its validity is checked in a single pass (i.e., one iteration) of an abstract interpretation-based checker. A main challenge to make ACC useful in practice is to reduce the size of certificates as much as possible while at the same time not increasing checking time. The intuitive idea is to only include in the certificate information that the checker is unable to reproduce without iterating. We introduce the notion of reduced certificate which characterizes the subset of the abstraction which a checker needs in order to validate (and re-construct) the fall certificate in a single pass. Based on this notion, we instrument a generic analysis algorithm with the necessary extensions in order to identify the information relevant to the checker. Interestingly, the fact that the reduced certificate omits (parts of) the abstraction has implications in the design of the checker. We provide the sufficient conditions which allow us to ensure that 1) if the checker succeeds in validating the certificate, then the certificate is valid for the program (correctness) and 2) the checker will succeed for any reduced certificate which is valid (completeness). Our approach has been implemented and benchmarked within the CiaoPP system. The experimental results show t h a t our proposal is able to greatly reduce the size of certificates in practice. To appear in Theory and Practice of Logic Programming (TPLP).