7 resultados para carbon fibre polymers
em Universidad Politécnica de Madrid
Resumo:
The end-notched flexure (ENF) test calculates the value of mode II fracture energy in adhesive bonding between the substrates of same nature. Traditional methods of calculating fracture energy in the ENF test are not suitable in cases where the thickness of the adhesive is non-negligible compared with adherent thicknesses. To address this issue, a specific methodology for calculating mode II fracture energy has been proposed in this paper. To illustrate the applicability of the proposed method, the fracture energy was calculated by the ENF test for adhesive bonds between aluminium and a composite material, which considered two different types of adhesive (epoxy and polyurethane) and various surface treatments. The proposed calculation model provides higher values of fracture energy than those obtained from the simplified models that consider the adhesive thickness to be zero, supporting the conclusion that the calculation of mode II fracture energy for adhesives with non-negligible thickness relative to their adherents should be based on mathematical models, such as the method proposed in this paper, that incorporate the influence of this thickness.
Resumo:
The influence of singlewalled carbon nanotubes (SWCNT) and inorganic fullerenelike tungsten disulfide nanoparticles (IFWS2) on the morphology and thermal, mechanical and electrical performance of multifunctional fibrereinforced polymer composites has been investigated. Significant improvements were observed in stiffness, strength and toughness in poly (ether ether ketone) (PEEK) / (SWCNT) / glass fibre (GF) laminates when a compatibilizer was used for wrapping the CNTs. Hybrid poly(phenylene sulphide) (PPS)/IFWS2/ carbon fibre (CF) reinforced polymer composites showed improved mechanical and tribological properties attributed to a synergetic effect between the IF nanoparticles and CF.
Resumo:
El ensamblado de nanotubos de carbono (CNT) como una fibra macroscópica en la cual están orientados preferentemente paralelos entre sí y al eje de la fibra, ha dado como resultado un nuevo tipo de fibra de altas prestaciones derivadas de la explotación eficiente de las propiedades axiales de los CNTs, y que tiene un gran número de aplicaciones potenciales. Fibras continuas de CNTs se produjeron en el Instituto IMDEA Materiales mediante el proceso de hilado directo durante la reacción de síntesis por deposición química de vapores. Uno de los objetivos de esta tesis es el estudio de la estructura de estas fibras mediante técnicas del estado del arte de difracción de rayos X de sincrotrón y la elaboración de un modelo estructural de dicho material. Mediciones texturales de adsorción de gases, análisis de micrografías de electrones y dispersión de rayos X de ángulo alto y bajo (WAXS/SAXS) indican que el material tiene una estructura mesoporosa con una distribución de tamaño de poros ancha derivada del amplio rango de separaciones entre manojos de CNTs, así como una superficie específica de 170m2/g. Los valores de dimensión fractal obtenidos mediante SAXS y análisis Barrett-Joyner-Halenda (BJH) de mediciones texturales coinciden en 2.4 y 2.5, respectivamente, resaltando el carácter de red de la estructura de dichas fibras. La estructura mesoporosa y tipo hilo de las fibra de CNT es accesible a la infiltración de moléculas externas (líquidos o polímeros). En este trabajo se estudian los cambios en la estructura multiescala de las fibras de CNTs al interactuar con líquidos y polímeros. Los efectos de la densificación en la estructura de fibras secas de CNT son estudiados mediante WAXS/SAXS. El tratamiento de densificación junta los manojos de la fibra (los poros disminuyen de tamaño), resultando en un incremento de la densidad de la fibra. Sin embargo, los dominios estructurales correspondientes a la transferencia de esfuerzo mecánica y carga eléctrica en los nanotubos no son afectados durante este proceso de densificación; como consecuencia no se produce un efecto sustancial en las propiedades mecánicas y eléctricas. Mediciones de SAXS and fibra de CNT antes y después de infiltración de líquidos confirman la penetración de una gran cantidad de líquidos que llena los poros internos de la fibra pero no se intercalan entre capas de nanotubos adyacentes. La infiltración de cadenas poliméricas de bajo peso molecular tiende a expandir los manojos en la fibra e incrementar el ángulo de apertura de los poros. Los resultados de SAXS indican que la estructura interna de la fibra en términos de la organización de las capas de tubos y su orientación no es afectada cuando las muestras consisten en fibras infiltradas con polímeros de alto peso molecular. La cristalización de varios polímeros semicristalinos es acelerada por la presencia de fibras de CNTs alineados y produce el crecimiento de una capa transcristalina normal a la superficie de la fibra. Esto es observado directamente mediante microscopía óptica polarizada, y detectado mediante calorimetría DSC. Las lamelas en la capa transcristalina tienen orientación de la cadena polimérica paralela a la fibra y por lo tanto a los nanotubos, de acuerdo con los patrones de WAXS. Esta orientación preferencial se sugiere como parte de la fuerza impulsora en la nucleación. La nucleación del dominio cristalino polimérico en la superficie de los CNT no es epitaxial. Ocurre sin haber correspondencia entre las estructuras cristalinas del polímero y los nanotubos. Estas observaciones contribuyen a la compresión del fenómeno de nucleación en CNTs y otros nanocarbonos, y sientan las bases para el desarrollo de composites poliméricos de gran escala basados en fibra larga de CNTs alineados. ABSTRACT The assembly of carbon nanotubes into a macroscopic fibre material where they are preferentially aligned parallel to each other and to the fibre axis has resulted in a new class of high-performance fibres, which efficiently exploits the axial properties of the building blocks and has numerous applications. Long, continuous CNT fibres were produced in IMDEA Materials Institute by direct fibre spinning from a chemical vapour deposition reaction. These fibres have a complex hierarchical structure covering multiple length scales. One objective of this thesis is to reveal this structure by means of state-of-the-art techniques such as synchrotron X-ray diffraction, and to build a model to link the fibre structural elements. Texture and gas absorption measurements, using electron microscopy, wide angle and small angle X-ray scattering (WAXS/SAXS), and pore size distribution analysis by Barrett-Joyner-Halenda (BJH), indicate that the material has a mesoporous structure with a wide pore size distribution arising from the range of fibre bundle separation, and a high surface area _170m2/g. Fractal dimension values of 2.4_2.5 obtained from the SAXS and BJH measurements highlight the network structure of the fibre. Mesoporous and yarn-like structure of CNT fibres make them accessible to the infiltration of foreign molecules (liquid or polymer). This work studies multiscale structural changes when CNT fibres interact with liquids and polymers. The effects of densification on the structure of dry CNT fibres were measured by WAXS/SAXS. The densification treatment brings the fibre bundles closer (pores become smaller), leading to an increase in fibre density. However, structural domains made of the load and charge carrying nanotubes are not affected; consequently, it has no substantial effect on mechanical and electrical properties. SAXS measurements on the CNT fibres before and after liquid infiltration imply that most liquids are able to fill the internal pores but not to intercalate between nanotubes. Successful infiltration of low molecular weight polymer chains tends to expand the fibre bundles and increases the pore-opening angle. SAXS results indicate that the inner structure of the fibre, in terms of the nanotube layer arrangement and the fibre alignment, are not largely affected when infiltrated with polymers of relatively high molecular weight. The crystallisation of a variety of semicrystalline polymers is accelerated by the presence of aligned fibres of CNTs and results in the growth of a transcrystalline layer perpendicular to the fibre surface. This can be observed directly under polarised optical microscope, and detected by the exothermic peaks during differential scanning calorimetry. The discussion on the driving forces for the enhanced nucleation points out the preferential chain orientation of polymer lamella with the chain axis parallel to the fibre and thus to the nanotubes, which is confirmed by two-dimensional WAXS patterns. A non-epitaxial polymer crystal growth habit at the CNT-polymer interface is proposed, which is independent of lattice matching between the polymer and nanotubes. These findings contribute to the discussion on polymer nucleation on CNTs and other nanocarbons, and their implication for the development of large polymer composites based on long and aligned fibres of CNTs.
Resumo:
The adhesives used for applications in marine environments are subject to particular chemical conditions, which are mainly characterised by an elevated chlorine ion content and intermittent wetting/drying cycles, among others.These conditions can limit the use of adhesives due to the degradation processes that they experience. In this work, the chemical degradation of two different polymers, polyurethane and vinylester, was studied in natural seawater under immersion for different periods of time.The diffusion coefficients and concentration profiles of water throughout the thickness of the adhesiveswere obtained.Microstructural changes in the polymer due to the action of water were observed by SEM, and the chemical degradation of the polymer was monitored with the Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The degradation of the mechanical properties of the adhesive was determined by creep tests withMixed Cantilever Beam (MCB) specimens at different temperatures. After 180 days of immersion of the specimens, it was concluded that the J-integral value (depending on the strain) implies a loss of stiffness of 51% and a decrease in the failure load of 59% for the adhesive tested.
Resumo:
Presentación realizada en el PhD Seminar del ITS 2011 en Budapest. ICTs (Information and Communication Technologies) currently account for 2% of total carbon emissions. However, although modern standards require strict measures to reduce energy consumption across all industrial and services sectors, the ICT sector also faces an increase in services and bandwidth demand. The deployment of Next Generation Networks (NGN) will be the answer to this new demand; more specifically, Next Generation Access Networks (NGANs) will provide higher bandwidth access to users. Several policy and cost analyses are being carried out to understand the risks and opportunities of new deployments, but the question of what role energy consumption plays in NGANs seems off the table. Thus, this paper proposes a model to analyse the energy consumption of the main fibre-based NGAN architectures: Fibre To The House (FTTH), in both Passive Optical Network (PON) and Point-to-Point (PtP) variations, and FTTx/VDSL. The aim of this analysis is to provide deeper insight on the impact of new deployments on the energy consumption of the ICT sector and the effects of energy consumption on the life-cycle cost of NGANs. The paper also presents an energy consumption comparison of the presented architectures, particularised to the specific geographic and demographic distribution of users of Spain but easily extendable to other countries.
Resumo:
Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2) lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg). IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.
Resumo:
En la actualidad muchas estructuras de hormigón armado necesitan ser reforzadas debido a diversas razones: errores en el proyecto o construcción, deterioro debido a efectos ambientales, cambios de uso o mayores requerimientos en los códigos. Los materiales compuestos, también conocidos como polímeros reforzados con fibras (FRP), están constituidos por fibras continuas de gran resistencia y rigidez embebidas en un material polimérico. Los FRP se utilizan cada vez más en aplicaciones estructurales debido a sus excelentes propiedades (elevadas resistencia y rigidez específicas y resistencia a la corrosión). Una de las aplicaciones más atractivas es el refuerzo de pilares mediante confinamiento para incrementar su resistencia y ductilidad. El confinamiento puede conseguirse pegando capas de FRP envolviendo el pilar en la dirección de los cercos (con las fibras orientadas en dirección perpendicular al eje del elemento). Se han realizado numerosos estudios experimentales en probetas cilíndricas pequeñas confinadas con encamisados de FRP y sometidas a compresión axial, y se han propuesto varios modelos sobre el hormigón confinado con FRP. Es sabido que el confinamiento de pilares de sección no circular es menos eficiente. En una sección circular, el FRP ejerce una presión de confinamiento uniforme sobre todo el perímetro, mientras que en una sección rectangular la acción de confinamiento se concentra en las esquinas. Esta tesis presenta los resultados de una investigación experimental sobre el comportamiento de probetas de hormigón de sección cuadrada confinadas con FRP y sometidas a compresión centrada. Se realizaron un total de 42 ensayos investigándose el comportamiento en las direcciones axial y transversal. Las variables del estudio incluyen: la resistencia del hormigón, el tipo de fibras (vidrio o carbono), la cuantía de refuerzo y el radio de curvatura de las esquinas. Los resultados de los ensayos realizados muestran que el confinamiento con FRP puede mejorar considerablemente la resistencia y ductilidad de pilares de hormigón armado de sección cuadrada con las esquinas redondeadas. La mejora conseguida es mayor en los hormigones de baja resistencia que en los de resistencia media. La deformación de rotura de la camisa de FRP es menor que la que se obtiene en ensayos de tracción normalizados del laminado, y la eficiencia del confinamiento depende en gran medida del radio de redondeo de las esquinas. Los resultados se han comparado con los obtenidos según los modelos teóricos más aceptados. Hay dos parámetros críticos en el ajuste de los modelos: el factor de eficiencia de la deformación y el efecto de confinamiento en secciones no circulares. Nowadays, many existing RC structures are in need of repair and strengthening for several reasons: design or construction errors, deterioration caused by environmental effects, change in use of the structures or revisions of code requirements. Composite materials, also known as fibre reinforced polymers (FRP), are composed of high strength and stiffness continuous fibres embedded in a polymer material. FRP materials are being increasingly used in many structural applications due to their excellent properties (high strength- and stiffness-toweight ratio, good corrosion behaviour). One of the most attractive applications of FRP is the confinement of concrete columns to enhance both strength and ductility. Concrete confinement can be achieved by bonding layers of hoop FRP around the column (fibres oriented perpendicular to the longitudinal axis). Many experimental studies have been conducted on small-scale plain concrete specimens of circular cross-sections confined with FRP and subjected to pure axial compressive loading, and several design models have been proposed to describe the behaviour of FRP-confined concrete. It is widely accepted that the confinement of non-circular columns is less efficient than the confinement of circular columns. In a circular cross section, the jacket exerts a uniform confining pressure over the entire perimeter. In the case of a rectangular cross section, the confining action is mostly concentrated at the corners. This thesis presents the results of a comprehensive experimental investigation on the behaviour of axially loaded square concrete specimens confined with FRP. A total of 42 compression tests were conducted, and the behaviour of the specimens in the axial and transverse directions were investigated. The parameters considered in this study are: concrete strength, type of fibres (glass or carbon), amount of FRP reinforcement and corner radius of the cross section. The tests results indicate that FRP confinement can enhance considerably the compressive strength and ductility of RC square columns with rounded corners. The enhancement is more pronounced for low- than for normal-strength concrete. The rupture strain of the FRP jacket is lower than the ultimate strain obtained by standard tensile testing of the FRP material, and the confinement efficiency significantly depends on the corner radius. The confined concrete behaviour was predicted according to the more accepted theoretical models and compared with experimental results. There are two key parameters which critically influence the fitting of the models: the strain efficiency factor and the effect of confinement in non-circular sections.