12 resultados para canonical matrices

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a series of attempts to research and document relevant sloshing type phenomena, a series of experiments have been conducted. The aim of this paper is to describe the setup and data processing of such experiments. A sloshing tank is subjected to angular motion. As a result pressure registers are obtained at several locations, together with the motion data, torque and a collection of image and video information. The experimental rig and the data acquisition systems are described. Useful information for experimental sloshing research practitioners is provided. This information is related to the liquids used in the experiments, the dying techniques, tank building processes, synchronization of acquisition systems, etc. A new procedure for reconstructing experimental data, that takes into account experimental uncertainties, is presented. This procedure is based on a least squares spline approximation of the data. Based on a deterministic approach to the first sloshing wave impact event in a sloshing experiment, an uncertainty analysis procedure of the associated first pressure peak value is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma detectors based on monolithic scintillator blocks coupled to APDs matrices have proved to be a good alternative to pixelated ones for PET scanners. They provide comparable spatial resolution, improve the sensitivity and make easier the mechanical design of the system. In this study we evaluate by means of Geant4-based simulations the possibility of replacing the APDs by SiPMs. Several commercial matrices of light sensors coupled to LYSO:Ce monolithic blocks have been simulated and compared. Regarding the spatial resolution and linearity of the detector, SiPMs with high photo detection efficiency could become an advantageous replacement for the APDs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesis MEDIDAS AUTOSEMEJANTES EN EL PLANO, MOMENTOS Y MATRICES DE HESSENBERG se enmarca entre las áreas de la teoría geométrica de la medida, la teoría de polinomios ortogonales y la teoría de operadores. La memoria aborda el estudio de medidas con soporte acotado en el plano complejo vistas con la óptica de las matrices infinitas de momentos y de Hessenberg asociadas a estas medidas que en la teoría de los polinomios ortogonales las representan. En particular se centra en el estudio de las medidas autosemejantes que son las medidas de equilibrio definidas por un sistema de funciones iteradas (SFI). Los conjuntos autosemejantes son conjuntos que tienen la propiedad geométrica de descomponerse en unión de piezas semejantes al conjunto total. Estas piezas pueden solaparse o no, cuando el solapamiento es pequeño la teoría de Hutchinson [Hut81] funciona bien, pero cuando no existen restricciones falla. El problema del solapamiento consiste en controlar la medida de este solapamiento. Un ejemplo de la complejidad de este problema se plantea con las convoluciones infinitas de distribuciones de Bernoulli, que han resultado ser un ejemplo de medidas autosemejantes en el caso real. En 1935 Jessen y A. Wintner [JW35] ya se planteaba este problema, lejos de ser sencillo ha sido estudiado durante más de setenta y cinco años y siguen sin resolverse las principales cuestiones planteadas ya por A. Garsia [Gar62] en 1962. El interés que ha despertado este problema así como la complejidad del mismo está demostrado por las numerosas publicaciones que abordan cuestiones relacionadas con este problema ver por ejemplo [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05],[JKS07] [JKS11]. En el primer capítulo comenzamos introduciendo con detalle las medidas autosemejante en el plano complejo y los sistemas de funciones iteradas, así como los conceptos de la teoría de la medida necesarios para describirlos. A continuación se introducen las herramientas necesarias de teoría de polinomios ortogonales, matrices infinitas y operadores que se van a usar. En el segundo y tercer capítulo trasladamos las propiedades geométricas de las medidas autosemejantes a las matrices de momentos y de Hessenberg, respectivamente. A partir de estos resultados se describen algoritmos para calcular estas matrices a partir del SFI correspondiente. Concretamente, se obtienen fórmulas explícitas y algoritmos de aproximación para los momentos y matrices de momentos de medidas fractales, a partir de un teorema del punto fijo para las matrices. Además utilizando técnicas de la teoría de operadores, se han extendido al plano complejo los resultados que G. Mantica [Ma00, Ma96] obtenía en el caso real. Este resultado es la base para definir un algoritmo estable de aproximación de la matriz de Hessenberg asociada a una medida fractal u obtener secciones finitas exactas de matrices Hessenberg asociadas a una suma de medidas. En el último capítulo, se consideran medidas, μ, más generales y se estudia el comportamiento asintótico de los autovalores de una matriz hermitiana de momentos y su impacto en las propiedades de la medida asociada. En el resultado central se demuestra que si los polinomios asociados son densos en L2(μ) entonces necesariamente el autovalor mínimo de las secciones finitas de la matriz de momentos de la medida tiende a cero. ABSTRACT The Thesis work “Self-similar Measures on the Plane, Moments and Hessenberg Matrices” is framed among the geometric measure theory, orthogonal polynomials and operator theory. The work studies measures with compact support on the complex plane from the point of view of the associated infinite moments and Hessenberg matrices representing them in the theory of orthogonal polynomials. More precisely, it concentrates on the study of the self-similar measures that are equilibrium measures in a iterated functions system. Self-similar sets have the geometric property of being decomposable in a union of similar pieces to the complete set. These pieces can overlap. If the overlapping is small, Hutchinson’s theory [Hut81] works well, however, when it has no restrictions, the theory does not hold. The overlapping problem consists in controlling the measure of the overlap. The complexity of this problem is exemplified in the infinite convolutions of Bernoulli’s distributions, that are an example of self-similar measures in the real case. As early as 1935 [JW35], Jessen and Wintner posed this problem, that far from being simple, has been studied during more than 75 years. The main cuestiones posed by Garsia in 1962 [Gar62] remain unsolved. The interest in this problem, together with its complexity, is demonstrated by the number of publications that over the years have dealt with it. See, for example, [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05], [JKS07] [JKS11]. In the first chapter, we will start with a detailed introduction to the self-similar measurements in the complex plane and to the iterated functions systems, also including the concepts of measure theory needed to describe them. Next, we introduce the necessary tools from orthogonal polynomials, infinite matrices and operators. In the second and third chapter we will translate the geometric properties of selfsimilar measures to the moments and Hessenberg matrices. From these results, we will describe algorithms to calculate these matrices from the corresponding iterated functions systems. To be precise, we obtain explicit formulas and approximation algorithms for the moments and moment matrices of fractal measures from a new fixed point theorem for matrices. Moreover, using techniques from operator theory, we extend to the complex plane the real case results obtained by Mantica [Ma00, Ma96]. This result is the base to define a stable algorithm that approximates the Hessenberg matrix associated to a fractal measure and obtains exact finite sections of Hessenberg matrices associated to a sum of measurements. In the last chapter, we consider more general measures, μ, and study the asymptotic behaviour of the eigenvalues of a hermitian matrix of moments, together with its impact on the properties of the associated measure. In the main result we demonstrate that, if the associated polynomials are dense in L2(μ), then necessarily follows that the minimum eigenvalue of the finite sections of the moments matrix goes to zero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo se presenta un método para el modelado de cadenas cinemáticas de robots que salva las dificultades asociadas a la elección de los sistemas de coordenadas y obtención de los parámetros de Denavit-Hartenberg. El método propuesto parte del conocimiento de la posición y orientación del extremo del robot en su configuración de reposo, para ir obteniendo en qué se transforman éstas tras los sucesivos movimientos de sus grados de libertad en secuencia descendente, desde el más alejado al más cercano a su base. Los movimientos son calculados en base a las Matrices de Desplazamiento, que permiten conocer en que se transforma un punto cuando éste es desplazado (trasladado o rotado) con respecto a un eje que no pasa por el origen. A diferencia del método de Denavit-Hartenberg, que precisa ubicar para cada eslabón el origen y las direcciones de los vectores directores de los sistemas de referencia asociados, el método basado en las Matrices de Desplazamiento precisa solo identificar el eje de cada articulación, lo que le hace más simple e intuitivo que aquel. La obtención de las Matrices de Desplazamiento y con ellas del Modelo Cinemático Directo a partir de los ejes de la articulación, puede hacerse mediante algunas simples operaciones, fácilmente programables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A uniform geometrical theory of diffraction (UTD) solution is developed for the canonical problem of the electromagnetic (EM) scattering by an electrically large circular cylinder with a uniform impedance boundary condition (IBC), when it is illuminated by an obliquely incident high frequency plane wave. A solution to this canonical problem is first constructed in terms of an exact formulation involving a radially propagating eigenfunction expansion. The latter is converted into a circumferentially propagating eigenfunction expansion suited for large cylinders, via the Watson transform, which is expressed as an integral that is subsequently evaluated asymptotically, for high frequencies, in a uniform manner. The resulting solution is then expressed in the desired UTD ray form. This solution is uniform in the sense that it has the important property that it remains continuous across the transition region on either side of the surface shadow boundary. Outside the shadow boundary transition region it recovers the purely ray optical incident and reflected ray fields on the deep lit side of the shadow boundary and to the modal surface diffracted ray fields on the deep shadow side. The scattered field is seen to have a cross-polarized component due to the coupling between the TEz and TMz waves (where z is the cylinder axis) resulting from the IBC. Such cross-polarization vanishes for normal incidence on the cylinder, and also in the deep lit region for oblique incidence where it properly reduces to the geometrical optics (GO) or ray optical solution. This UTD solution is shown to be very accurate by a numerical comparison with an exact reference solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A UTD solution is developed for describing the scattering by a circular cylinder with an impedance boundary condition (IBC), when it is illuminated by an obliquely incident electromagnetic (EM) plane wave. The solution to this canonical problem will be crucial for the construction of a more general UTD solution valid for an arbitrary smooth convex surface with an IBC, when it is illuminated by an arbitrary EM ray optical field. The canonical solution is uniformly valid across the surface shadow boundary that is tangent to the surface at grazing incidence. This canonical solution contains cross polarized terms in the scattered fields, which arise from a coupling of the TEz and TMz waves at the impedance boundary on the cylinder. Here, z is the cylinder axis. Numerical results show very good accuracy for the simpler and efficient UTD solution, when compared to exact but very slowly convergent eigenfunction solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reinforcing effect of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles in two different polymer matrices, isotactic polypropylene (iPP) and polyphenylene sulfide (PPS), has been investigated by means of dynamic depth-sensing indentation. The hardness and elastic modulus enhancement upon filler addition is analyzed in terms of two main contributions: changes in the polymer matrix nanostructure and intrinsic properties of the filler including matrix-particle load transfer. It is found that the latter mainly determines the overall mechanical improvement, whereas the nanostructural changes induced in the polymer matrix only contribute to a minor extent. Important differences are suggested between the mechanisms of deformation in the two nanocomposites, resulting in a moderate mechanical enhancement in case of iPP (20% for a filler loading of 1%), and a remarkable hardness increase in case of PPS (60% for the same filler content). The nature of the polymer amorphous phase, whether in the glassy or rubbery state, seems to play here an important role. Finally, nanoindentation and dynamic mechanical analysis measurements are compared and discussed in terms of the different directionality of the stresses applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an account of some aspects of the geometry of Kahler affine metrics based on considering them as smooth metric measure spaces and applying the comparison geometry of Bakry-Emery Ricci tensors. Such techniques yield a version for Kahler affine metrics of Yau s Schwarz lemma for volume forms. By a theorem of Cheng and Yau, there is a canonical Kahler affine Einstein metric on a proper convex domain, and the Schwarz lemma gives a direct proof of its uniqueness up to homothety. The potential for this metric is a function canonically associated to the cone, characterized by the property that its level sets are hyperbolic affine spheres foliating the cone. It is shown that for an n -dimensional cone, a rescaling of the canonical potential is an n -normal barrier function in the sense of interior point methods for conic programming. It is explained also how to construct from the canonical potential Monge-Ampère metrics of both Riemannian and Lorentzian signatures, and a mean curvature zero conical Lagrangian submanifold of the flat para-Kahler space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Canonical Correlation Analysis for Interpreting Airborne Laser Scanning Metrics along the Lorenz Curve of Tree Size Inequality

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En hidrodinámica, el fenómeno de Sloshing se puede definir como el movimiento de la superficie libre de un fluido dentro de un contenedor sometido a fuerzas y perturbaciones externas. El fluido en cuestión experimenta violentos movimientos con importantes deformaciones de su superficie libre. La dinámica del fluido puede llegar a generar cargas hidrodinámicas considerables las cuales pueden afectar la integridad estructural y/o comprometer la estabilidad del vehículo que transporta dicho contenedor. El fenómeno de Sloshing ha sido extensivamente investigado matemática, numérica y experimentalmente, siendo el enfoque experimental el más usado debido a la complejidad del problema, para el cual los modelos matemáticos y de simulación son aun incapaces de predecir con suficiente rapidez y precisión las cargas debidas a dicho fenómeno. El flujo generado por el Sloshing usualmente se caracteriza por la presencia de un fluido multifase (gas-liquido) y turbulencia. Reducir al máximo posible la complejidad del fenómeno de Sloshing sin perder la esencia del problema es el principal reto de esta tesis doctoral, donde un trabajo experimental enfocado en casos canónicos de Sloshing es presentado y documentado con el objetivo de aumentar la comprensión de dicho fenómeno y por tanto intentar proveer información valiosa para validaciones de códigos numéricos. El fenómeno de Sloshing juega un papel importante en la industria del transporte marítimo de gas licuado (LNG). El mercado de LNG en los últimos años ha reportado un crecimiento hasta tres veces mayor al de los mercados de petróleo y gas convencionales. Ingenieros en laboratorios de investigación e ingenieros adscritos a la industria del LNG trabajan continuamente buscando soluciones económicas y seguras para contener, transferir y transportar grandes volúmenes de LNG. Los buques transportadores de LNG (LNGC) han pasado de ser unos pocos buques con capacidad de 75000 m3 hace unos treinta años, a una amplia flota con una capacidad de 140000 m3 actualmente. En creciente número, hoy día se construyen buques con capacidades que oscilan entre 175000 m3 y 250000 m3. Recientemente un nuevo concepto de buque LNG ha salido al mercado y se le conoce como FLNG. Un FLNG es un buque de gran valor añadido que solventa los problemas de extracción, licuefacción y almacenamiento del LNG, ya que cuenta con equipos de extracción y licuefacción a bordo, eliminando por tanto las tareas de transvase de las estaciones de licuefacción en tierra hacia los buques LNGC. EL LNG por tanto puede ser transferido directamente desde el FLNG hacia los buques LNGC en mar abierto. Niveles de llenado intermedios en combinación con oleaje durante las operaciones de trasvase inducen movimientos en los buques que generan por tanto el fenómeno de Sloshing dentro de los tanques de los FLNG y los LNGC. El trabajo de esta tesis doctoral lidia con algunos de los problemas del Sloshing desde un punto de vista experimental y estadístico, para ello una serie de tareas, descritas a continuación, se han llevado a cabo : 1. Un dispositivo experimental de Sloshing ha sido configurado. Dicho dispositivo ha permitido ensayar secciones rectangulares de tanques LNGC a escala con movimientos angulares de un grado de libertad. El dispositivo experimental ha sido instrumentado para realizar mediciones de movimiento, presiones, vibraciones y temperatura, así como la grabación de imágenes y videos. 2. Los impactos de olas generadas dentro de una sección rectangular de un LNGC sujeto a movimientos regulares forzados han sido estudiados mediante la caracterización del fenómeno desde un punto de vista estadístico enfocado en la repetitividad y la ergodicidad del problema. 3. El estudio de los impactos provocados por movimientos regulares ha sido extendido a un escenario más realístico mediante el uso de movimientos irregulares forzados. 4. El acoplamiento del Sloshing generado por el fluido en movimiento dentro del tanque LNGC y la disipación de la energía mecánica de un sistema no forzado de un grado de libertad (movimiento angular) sujeto a una excitación externa ha sido investigado. 5. En la última sección de esta tesis doctoral, la interacción entre el Sloshing generado dentro en una sección rectangular de un tanque LNGC sujeto a una excitación regular y un cuerpo elástico solidario al tanque ha sido estudiado. Dicho estudio corresponde a un problema de interacción fluido-estructura. Abstract In hydrodynamics, we refer to sloshing as the motion of liquids in containers subjected to external forces with large free-surface deformations. The liquid motion dynamics can generate loads which may affect the structural integrity of the container and the stability of the vehicle that carries such container. The prediction of these dynamic loads is a major challenge for engineers around the world working on the design of both the container and the vehicle. The sloshing phenomenon has been extensively investigated mathematically, numerically and experimentally. The latter has been the most fruitful so far, due to the complexity of the problem, for which the numerical and mathematical models are still incapable of accurately predicting the sloshing loads. The sloshing flows are usually characterised by the presence of multiphase interaction and turbulence. Reducing as much as possible the complexity of the sloshing problem without losing its essence is the main challenge of this phd thesis, where experimental work on selected canonical cases are presented and documented in order to better understand the phenomenon and to serve, in some cases, as an useful information for numerical validations. Liquid sloshing plays a key roll in the liquified natural gas (LNG) maritime transportation. The LNG market growth is more than three times the rated growth of the oil and traditional gas markets. Engineers working in research laboratories and companies are continuously looking for efficient and safe ways for containing, transferring and transporting the liquified gas. LNG carrying vessels (LNGC) have evolved from a few 75000 m3 vessels thirty years ago to a huge fleet of ships with a capacity of 140000 m3 nowadays and increasing number of 175000 m3 and 250000 m3 units. The concept of FLNG (Floating Liquified Natural Gas) has appeared recently. A FLNG unit is a high value-added vessel which can solve the problems of production, treatment, liquefaction and storage of the LNG because the vessel is equipped with a extraction and liquefaction facility. The LNG is transferred from the FLNG to the LNGC in open sea. The combination of partial fillings and wave induced motions may generate sloshing flows inside both the LNGC and the FLNG tanks. This work has dealt with sloshing problems from a experimental and statistical point of view. A series of tasks have been carried out: 1. A sloshing rig has been set up. It allows for testing tanks with one degree of freedom angular motion. The rig has been instrumented to measure motions, pressure and conduct video and image recording. 2. Regular motion impacts inside a rectangular section LNGC tank model have been studied, with forced motion tests, in order to characterise the phenomenon from a statistical point of view by assessing the repeatability and practical ergodicity of the problem. 3. The regular motion analysis has been extended to an irregular motion framework in order to reproduce more realistic scenarios. 4. The coupled motion of a single degree of freedom angular motion system excited by an external moment and affected by the fluid moment and the mechanical energy dissipation induced by sloshing inside the tank has been investigated. 5. The last task of the thesis has been to conduct an experimental investigation focused on the strong interaction between a sloshing flow in a rectangular section of a LNGC tank subjected to regular excitation and an elastic body clamped to the tank. It is thus a fluid structure interaction problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La familia de algoritmos de Boosting son un tipo de técnicas de clasificación y regresión que han demostrado ser muy eficaces en problemas de Visión Computacional. Tal es el caso de los problemas de detección, de seguimiento o bien de reconocimiento de caras, personas, objetos deformables y acciones. El primer y más popular algoritmo de Boosting, AdaBoost, fue concebido para problemas binarios. Desde entonces, muchas han sido las propuestas que han aparecido con objeto de trasladarlo a otros dominios más generales: multiclase, multilabel, con costes, etc. Nuestro interés se centra en extender AdaBoost al terreno de la clasificación multiclase, considerándolo como un primer paso para posteriores ampliaciones. En la presente tesis proponemos dos algoritmos de Boosting para problemas multiclase basados en nuevas derivaciones del concepto margen. El primero de ellos, PIBoost, está concebido para abordar el problema descomponiéndolo en subproblemas binarios. Por un lado, usamos una codificación vectorial para representar etiquetas y, por otro, utilizamos la función de pérdida exponencial multiclase para evaluar las respuestas. Esta codificación produce un conjunto de valores margen que conllevan un rango de penalizaciones en caso de fallo y recompensas en caso de acierto. La optimización iterativa del modelo genera un proceso de Boosting asimétrico cuyos costes dependen del número de etiquetas separadas por cada clasificador débil. De este modo nuestro algoritmo de Boosting tiene en cuenta el desbalanceo debido a las clases a la hora de construir el clasificador. El resultado es un método bien fundamentado que extiende de manera canónica al AdaBoost original. El segundo algoritmo propuesto, BAdaCost, está concebido para problemas multiclase dotados de una matriz de costes. Motivados por los escasos trabajos dedicados a generalizar AdaBoost al terreno multiclase con costes, hemos propuesto un nuevo concepto de margen que, a su vez, permite derivar una función de pérdida adecuada para evaluar costes. Consideramos nuestro algoritmo como la extensión más canónica de AdaBoost para este tipo de problemas, ya que generaliza a los algoritmos SAMME, Cost-Sensitive AdaBoost y PIBoost. Por otro lado, sugerimos un simple procedimiento para calcular matrices de coste adecuadas para mejorar el rendimiento de Boosting a la hora de abordar problemas estándar y problemas con datos desbalanceados. Una serie de experimentos nos sirven para demostrar la efectividad de ambos métodos frente a otros conocidos algoritmos de Boosting multiclase en sus respectivas áreas. En dichos experimentos se usan bases de datos de referencia en el área de Machine Learning, en primer lugar para minimizar errores y en segundo lugar para minimizar costes. Además, hemos podido aplicar BAdaCost con éxito a un proceso de segmentación, un caso particular de problema con datos desbalanceados. Concluimos justificando el horizonte de futuro que encierra el marco de trabajo que presentamos, tanto por su aplicabilidad como por su flexibilidad teórica. Abstract The family of Boosting algorithms represents a type of classification and regression approach that has shown to be very effective in Computer Vision problems. Such is the case of detection, tracking and recognition of faces, people, deformable objects and actions. The first and most popular algorithm, AdaBoost, was introduced in the context of binary classification. Since then, many works have been proposed to extend it to the more general multi-class, multi-label, costsensitive, etc... domains. Our interest is centered in extending AdaBoost to two problems in the multi-class field, considering it a first step for upcoming generalizations. In this dissertation we propose two Boosting algorithms for multi-class classification based on new generalizations of the concept of margin. The first of them, PIBoost, is conceived to tackle the multi-class problem by solving many binary sub-problems. We use a vectorial codification to represent class labels and a multi-class exponential loss function to evaluate classifier responses. This representation produces a set of margin values that provide a range of penalties for failures and rewards for successes. The stagewise optimization of this model introduces an asymmetric Boosting procedure whose costs depend on the number of classes separated by each weak-learner. In this way the Boosting procedure takes into account class imbalances when building the ensemble. The resulting algorithm is a well grounded method that canonically extends the original AdaBoost. The second algorithm proposed, BAdaCost, is conceived for multi-class problems endowed with a cost matrix. Motivated by the few cost-sensitive extensions of AdaBoost to the multi-class field, we propose a new margin that, in turn, yields a new loss function appropriate for evaluating costs. Since BAdaCost generalizes SAMME, Cost-Sensitive AdaBoost and PIBoost algorithms, we consider our algorithm as a canonical extension of AdaBoost to this kind of problems. We additionally suggest a simple procedure to compute cost matrices that improve the performance of Boosting in standard and unbalanced problems. A set of experiments is carried out to demonstrate the effectiveness of both methods against other relevant Boosting algorithms in their respective areas. In the experiments we resort to benchmark data sets used in the Machine Learning community, firstly for minimizing classification errors and secondly for minimizing costs. In addition, we successfully applied BAdaCost to a segmentation task, a particular problem in presence of imbalanced data. We conclude the thesis justifying the horizon of future improvements encompassed in our framework, due to its applicability and theoretical flexibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential resultant formulas are defined, for a system $\cP$ of $n$ ordinary Laurent differential polynomials in $n-1$ differential variables. These are determinants of coefficient matrices of an extended system of polynomials obtained from $\cP$ through derivations and multiplications by Laurent monomials. To start, through derivations, a system $\ps(\cP)$ of $L$ polynomials in $L-1$ algebraic variables is obtained, which is non sparse in the order of derivation. This enables the use of existing formulas for the computation of algebraic resultants, of the multivariate sparse algebraic polynomials in $\ps(\cP)$, to obtain polynomials in the differential elimination ideal generated by $\cP$. The formulas obtained are multiples of the sparse differential resultant defined by Li, Yuan and Gao, and provide order and degree bounds in terms of mixed volumes in the generic case.