6 resultados para bubble nucleation
em Universidad Politécnica de Madrid
Resumo:
The laminar low Mach number flow of a gas in a tube is analyzed for very small and very large values of the inlet-to-wall temperature ratio. When this ratio tends to zero, pressure forces confine the cold gas to a thin core around the axis of the tube. This core is neatly bounded by an ablation front that consumes it at a finite distance from the tube inlet. When the temperature ratio tends to infinity, the temperature of the gas increases smoothly from the wall to the axis of the tube and the shear stress and heat flux are positive at the wall despite the fact that the viscosity and thermal conductivity of the gas scaled with their inlet values tend to zero at the wall.
Resumo:
This work summarizes the observations made on the variation and time evolution of the reflectanceanisotropy signal during the MOVPE growth of GaInPnucleation layers on Germanium substrates. This in situ monitoring tool is used to assess the impact of different nucleation routines and reactor conditions on the quality of the layers grown. This comparison is carried out by establishing a correlation between reflectanceanisotropy signature at 2.1 eV and the morphology of the epilayers evaluated by atomic force microscopy (AFM). This paper outlines the potential of reflectanceanisotropy to predict, explore, and therefore optimize, the best growth conditions that lead to a high quality III–V epilayer on a Ge substrate
Resumo:
Pressure measurements on the surface of a 1:230 scale model of Bolund Island are presented. The model is smooth and no boundary layer generation has been considered since the experiment is designed as the simplest possible reference case. Measurement have been taken for a range of Reynolds numbers based on the average undisturbed wind speed U∞ and the maximum height of the island, h [1.7×104, 8.5×104], and for a range of wind directions. Four minutes time series of pressure in more than 400 points have been acquired and analysed to obtain the spatial distribution of both the time average and the variance of the pressure signal. The horizontal extension of the detachment bubble for the different Reynolds numbers and wind directions is identified by isobars and curves of constant value of pressure variance. The applicability of this technique for evaluating the horizontal topology of high turbulence regions associated to detachment bubbles after escarpments in potential wind farm sites is analysed. The results obtained shows that the behaviour of the mean pressure coefficient, Cp, the std. pressure coefficient, Cp, and the skewness of the pressure, Sp can be used to study the bubble over the island to a certain extent. This experiment is part of the set of different analysis on the Bolund test case that is being undertaken within WAUDIT project by the different scientific groups.
Resumo:
•Self- assembled Ga(In)N Nanorods and Nanostructures •Ordered growth of GaN Nanorods: masks issues •Ordered growth of GaN Nanorods: mechanisms •White NanoLEDs
Resumo:
Pressure measurements on the surface of a 1:230 scale model of Bolund Island are presented. The model is smooth and no boundary layer generation has been considered since the experiment is designed as the simplest possible reference case. Measurement have been taken for a range of Reynolds numbers based on the average undisturbed wind speed U? and the maximum height of the island, h [1.7×104 , 8.5×104], and for a range of wind directions. Four minutes time series of pressure in more than 400 points have been acquired and analysed to obtain the spatial distribution of both the time average and the variance of the pressure signal. The horizontal extension of the detachment bubble for the different Reynolds numbers and wind directions is identified by isobars and curves of constant value of pressure variance. The applicability of this technique for evaluating the horizontal topology of high turbulence regions associated to detachment bubbles after escarpments in potential wind farm sites is analysed. The results obtained shows that the behaviour of the mean pressure coefficient, Cp, the std. pressure coefficient, C?p, and the skewness of the pressure, Sp can be used to study the bubble over the island to a certain extent. This experiment is part of the set of different analysis on the Bolund test case that is being undertaken within WAUDIT project by the different scientific groups.
Resumo:
The theoretical study of forced bubble oscillations is motivated by the importance of cavitation bubbles and oscillating encapsulated microbubbles (i.e. contrast agents) in medical sciences. In more details,theoretical studies on bubble dynamics addressing the sound-bubble interaction phenomenon provide the basis for understanding the dynamics of contrast agent microbubbles used in medical diagnosis and of non-linearly oscillating cavitation bubbles in the case of high-intensity ultrasound therapy. Moreover, the inclusion of viscoelasticity is of vital importance for an accurate theoretical analysis since most biological tissues and fluids exhibit non-Newtonian behavior.