2 resultados para bottom-simulating reflection
em Universidad Politécnica de Madrid
Resumo:
In this study, forward seismic modelling of four geological models with Hydrocarbon (HC) traps were performed by ray tracing method to produce synthetic seismogram of each model. The idea is to identify the Hydrocarbon Indicators (HCI‟s) such as bright spot, flat spot, dim spot and Bottom Simulating Reflector (BSR) in the synthethic seismogram. The modelling was performed in DISCO/FOCUS 5.0 seismic data processing programme. Strong positive and negative reflection amplitudes and some artifact reflection horizons were observed on produced seismograms due to rapid changes in subsurface velocity and geometry respectively Additionally, Amplitude-versus-angle (AVA) curves of each HCIs was calculated by the Crewes Zoeppritz Explorer programme. AVA curves show that how the reflection coefficients change with the density and the P and S wave velocities of each layer such as oil, gas, gas hydrate or water saturated sediments. Due to AVA curves, an increase in reflection amplitude with incident angle of seismic waves corresponds to an indicator of a hydrocarbon reservoir
Resumo:
Light Detection and Ranging (LIDAR) provides high horizontal and vertical resolution of spatial data located in point cloud images, and is increasingly being used in a number of applications and disciplines, which have concentrated on the exploit and manipulation of the data using mainly its three dimensional nature. Bathymetric LIDAR systems and data are mainly focused to map depths in shallow and clear waters with a high degree of accuracy. Additionally, the backscattering produced by the different materials distributed over the bottom surface causes that the returned intensity signal contains important information about the reflection properties of these materials. Processing conveniently these values using a Simplified Radiative Transfer Model, allows the identification of different sea bottom types. This paper presents an original method for the classification of sea bottom by means of information processing extracted from the images generated through LIDAR data. The results are validated using a vector database containing benthic information derived by marine surveys.