43 resultados para bola de cristal
em Universidad Politécnica de Madrid
Resumo:
Esta tesis se centra en el estudio y desarrollo de dispositivos de aplicación basados en cristal líquido polimérico. Las propiedades de los cristales líquidos los hacen interesantes para su uso en el desarrollo de dispositivos de seguridad para autenticación de productos y marcas, y detección y prevención de falsificaciones. Asimismo, pueden ser muy útiles para fabricar dispositivos basados en CLs dispersos en polímero, los cuales tienen a su vez múltiples aplicaciones. La orientación de las moléculas de cristal líquido y la birrefringencia son las dos características principales que afectan a las propiedades de estos dispositivos. Un dispositivo de cristal líquido estándar consiste en un sándwich formado por dos sustratos de vidrio transparente, dotados con electrodo de ITO (Indium Tin Oxide) en su superficie interna, que confinan el cristal líquido en su interior. En la primera parte de esta tesis se describen las características más importantes que describen una célula de cristal líquido. Esta introducción básica en necesaria para la correcta comprensión de los capítulos posteriores en los que se detalla el desarrollo concreto de los dispositivos desarrollados en la investigación llevada a cabo. Por ejemplo, en el caso de los dispositivos de seguridad se han eliminado los sustratos de vidrio (en la última fase de su desarrollo) para conseguir dispositivos flexibles. En la segunda parte de la tesis se incluye la descripción completa de los dispositivos fabricados, así como de los protocolos de fabricación seguidos y diseñados específicamente para ello. También se detallan en esta parte los resultados obtenidos, así como las propiedades ópticas y electroópticas en cada caso, y el/los equipos de caracterización utilizados. Utilizando cristal líquido nemático y colorante dicroico, se han desarrollado dispositivos que contienen múltiples imágenes latentes en cada cara del mismo. Utilizando distintas técnicas de alineamiento se consigue crear cualquier tipo de motivo latente, ya sean símbolos sencillos, figuras, logotipos o incluso imágenes con escala de gris. Cuanto más complejo es el dispositivo, mayor es la dificultad para reproducirlo en una eventual falsificación. Para visualizar e identificar los motivos es necesario emplear luz polarizada, por ejemplo, con la ayuda de un sencillo polarizador lineal. Dependiendo de si el polarizador está colocado delante del dispositivo o detrás del él, se mostrarán las imágenes generadas en una u otra cara. Este efecto es posible gracias al colorante dicroico añadido al CL, a la orientación inducida sobre las moléculas, y a la estructura de twist utilizada en los dispositivos. En realidad, para ver el efecto de los dispositivos no es necesario el uso de un polarizador, basta con el reflejo de una superficie dielétrica (percialmente polarizado), o la luz emitida por la pantalla de dispositivos de consumo comunes como un televisor LCD, un monitor de ordenador o un “smartphone”. Por otro lado, utilizando una mezcla entre un CL nemático polimérico y un CL nemático no polimérico es posible fabricar dispositivos LCPC (Liquid Crystal Polymer Composite) con propiedades electroópticas muy interesantes, que funcionan a tensiones de conmutación bajas. El CL polimérico conforma una estructura de red en el interior del sándwich que mantiene confinado al CL nemático en pequeños microdominios. Se han fabricado dispositivos LCPC con conmutación inversa utilizando tanto alineamiento homogéneo como homeotrópico. Debido a que tanto la estructura de CL polimérico como el CL nemático que rellena los microdominios están orientados en una misma dirección de alineamiento preinducida, la luz dispersada por el dispositivo se encuentra polarizada. La dirección de polarización coincide con la dirección de alineamiento. La innovación aportada por esta investigación: un nuevo dispositivo LCPC inverso de respuesta ultrarápida y polarizada basado en la mezcla de dos CL nemáticos y, un dispositivo de seguridad y autenticación, patentado internacionalmente, basado en CL nemáticos dopados con colorante dicroico. Abstract This thesis is centered on the availability to use polymerizable liquid crystals to develop non-display application LC devices. Liquid crystal properties make them useful for the development of security devices in applications of authentication and detection of fakes, and also to achieve polymer dispersed LC devices to be used for different applications that will be studied here. Induced orientation of liquid crystal molecules and birefringence are the two main properties used in these devices. A standard liquid crystal device is a sandwich consisting of two parallel glass substrates carrying a thin transparent ITO (Indium‐Tin‐Oxide) electrode on their inner surfaces with the liquid crystal in the middle. The first part of this thesis will describe the most important parameters describing a liquid crystal cell. This basis is necessary for the understanding of later chapters where models of the liquid crystal devices will be discussed and developed. In the case of security devices the standard structure of an LC device has been modified by eliminating the glass substrates in order to achieve plastic and flexible devices. The second part of the thesis includes a detailed description of the devices achieved and the manufacturing protocols that have been developed ad-hoc. The optical and electrooptical properties and the characterization equipment are described here as well. Employing nematic liquid crystal and dichroic colorants, we have developed devices that show, with the aid of a polarizer, multiple images on each side of the device. By different alignment techniques it is possible to create any kind of symbols, drawings or motifs with a grayscale; the more complex the created device is, the more difficult is to fake it. To identify the motifs it is necessary to use polarized light. Depending on whether the polarizer is located in front of the LC cell or behind it, different motifs from one or the other substrate are shown. The effect arises from the dopant color dye added to the liquid crystal, the induced orientation and the twist structure. In practice, a grazing reflection on a dielectric surface is polarized enough to see the effect. Any LC flat panel display (LCD TV, computer, mobile phone) can obviously be used as backlight as well. On the other hand, by using a mixture of polymerizable and non-polymerizable nematics liquid crystals it is also possible to achieve LCPC (Liquid Crystal Polymer Composite) devices that show really interesting electrooptical characteristics using low switching voltages. Polymerizable LC creates a hollow structure inside the sandwich glass cell that keep nematics liquid crystal confined creating microdomains. Homogeneous and homeotropic alignments have been used to develop inverse switching mode LCPCs. Due to the double LC oriented structure, the outgoing scattered light from these devices is already polarized. The polarization axis coincides with LC molecules director, the alignment direction promoted. The novelties derived from the investigation presented here, new ultrafast inverse LCPC with polarized outgoing scattered light based on oriented nematic LC mixture, and an internationally patented security and authentication device based on nematics (doped with dichroic dye) oriented polymerizable LC.
Resumo:
Se ha diseñado y construido un array de microlentes cilíndricas de cristal líquido (CL) y se ha llevado a cabo un estudio sobre su comportamiento electroóptico. El array lenticular es novedoso en cuanto a los materiales empleados en su fabricación. Se ha utilizado Níquel como material clave para la implementación de un electrodo de alta resistividad. La combinación del electrodo de alta resistividad junto al CL (cuya impedancia paralelo es elevada) da lugar a un divisor reactivo que proporciona un gradiente de tensión hiperbólico del centro al extremo de cada lente. Este efecto, unido al alineamiento homogéneo de las moléculas de CL, permite la generación de un gradiente de índice de refracción, comportándose el dispositivo como una lente GRIN (GRadient Refraction INdex). Para la caracterización de su funcionamiento se ha analizado su perfil de fase empleando métodos interferométricos y procesamiento de imágenes. Además se han efectuado también diferentes medidas de contraste angular.
Resumo:
En este trabajo se presenta la implementación de un interferómetro por difracción puntual construido con un monopíxel de cristal líquido. En primer lugar se ha fabricado un monopíxel de cristal líquido con alineamiento paralelo de unas dimensiones de 3x3 cm2, en el que el electrodo cubre toda la superficie excepto en un orificio central de unas 50 ?m. Este orificio es el que actuará como punto difractor. Aplicando diferentes tensiones se puede cambiar la fase de la onda que llega al píxel en relación al punto central. Se ha construido un interferómetro con este elemento. Se captan 4 interferogramas con lo que se puede obtener la distribución de amplitud y fase de la onda. Se aplica este sistema para obtener un holograma digital y enfocar digitalmente diferentes planos de un objeto tridimensional.
Resumo:
Como es sabido, los cristales líquidos poseen la propiedad de orientarse en dominios inducidos por las condiciones de contorno, así como de sufrir reorientaciones por la acción de campos externos magnéticos, eléctricos u ópticos. Se conoce, asimismo, que la introducción de sustancias no mesomórficas en una estructura de cristal líquido no modifica apreciablemente su ordenación, a condición de que la impurificación realizada sea muy pequeña (10-2 -10-3 M típicamente). Las moléculas no mesomórficas son en este caso inducidas por los dominios de cristal líquido a orientarse a su vez, efecto este que puede ser detectado estudiando la absorción y/o emisión de luz polarizada de las mismas. La reorientación por campos externos, por su parte, sigue produciéndose cualitativamente de igual manera, aunque se producen variaciones en el voltaje umbral y/o tiempo de respuesta.
Resumo:
The thin lens method, used for the interpretation of interferometric data - obtained from smectic liquid cristals, has been modified. The analysis employed has - been derived from the one presented by Granjean. The theoretical results are in a good agreement with the experimentals values from other authors.
Resumo:
In this letter , we report a new method for óptical switching based on the electro-optical properties of liquid crystal materials and, in particular, of the nematic type. The basis of this new method is the use of twisted wedge structure that has not been reported before elsewhere. In the past several years , great efforts in integrated optics have been made to develop optical switching devices with fast speed by using electro-optic, acousto-optic or magneto -optic materials. A mechanically operated óptical switch made of grade-index rod 1enses and e1ectromagnets has been proposed too . Switches of this kind include one input and two output waveguides and, depending on the app1ied voltage, one incident light on the switch exits either in one or another of the two output waveguides.
Resumo:
En este artículo se presentan los primeros resultados obtenidos cuando una radiación láser de intensidad adecuada actúa sobre una estructura cilíndrica con cristal líquido nemático orientado homeotrópicamente. Según ha sido observado, se produce una reorientación inducida por el campo electromegnético del haz en las moléculas del nemático, con el consiguiente efecto sobre la radiación dispersada.
Resumo:
En el presente artículo se presentan algunos de los resultados que pueden obtenerse en el campo de la biestabilidad óptica híbrida, mediante el empleo de cristales líquidos del tipo nemático cuando adoptan una estructura homeotrópica planar. Los resultados obtenidos son análogos a los conseguidos con otros materiales ofreciendo la innegable ventaja de su menor costo y su mayor rendimiento energético.
Resumo:
A novel structure , based on a wedge shaped configuration, is presented . This structure , previously used in one of his forms,for refraction index measurements is analysed in this paper. The results obtained give the possibility of his use in electro snd magneto-optical modulation and deflection.
Resumo:
El presente trabajo de Tesis se ha centrado en el diseño, fabricación y caracterización de dispositivos basados en fibras de cristal fotónico infiltrado selectivamente con cristales líquidos, polímeros y una mezcla de ambos. Todos los dispositivos son sintonizables, y su área de aplicación se centra en comunicaciones ópticas y sensores. La manipulación y fusionado de fibras fotónicas, el llenado selectivo de determinadas cavidades y la alineación recíproca de fibras mantenedoras de polarización son tareas muy específicas y delicadas para las que se requieren protocolos muy estrictos. Previo a la fabricación de dispositivos ha sido necesaria por tanto una tarea de sistematización y creación de protocolos de fabricación. Una vez establecidos se ha procedido a la fabricación y caracterización de dispositivos. Los dispositivos fabricados se enumeran a continuación para posteriormente detallar una a una las singularidades de cada uno. • Interferómetros intermodales hechos a partir de una porción de fibra fotónica soldada entre dos fibras estándar, bien monomodo o PANDA (mantenedora de polarización). Estos interferómetros han sido sumergidos o bien llenados selectivamente con cristales líquidos para así sintonizar la señal interferométrica guiada a través de la fibra. • Infiltración de fibras fotónicas con cristales líquidos colestéricos con especial énfasis en la fase azul (blue phase) de estos materiales. Las moléculas de cristal líquido se autoalinean en volumen por lo que la infiltración de fibras fotónicas con estos cristales líquidos es muy interesante, pues es conocida la dificultad de alinear apropiadamente cristales líquidos dentro de cavidades micrométricas de las fibras fotónicas. • Grabación de redes holográficas de forma selectiva en las cavidades de una fibra fotónica. Estas redes holográficas, llamadas POLICRYPS (POlymer-LIquid CRYstal-Polymer Slices), son redes fabricadas a base de franjas de polímero y cristal líquido alineado perpendicularmente a dichas franjas. Las franjas son a su vez perpendiculares al eje de la fibra como lo puede ser una red de Bragg convencional. El cristal líquido, al estar alineado perpendicularmente a dichos franjas y paralelo al eje de la fibra, se puede conmutar aplicando un campo eléctrico externo, modificando así el índice efectivo de la red. Se puede fabricar por lo tanto una red de Bragg sintonizable en fibra, muy útil en comunicaciones ópticas. • Llenado selectivo de fibras fotónicas con polidimetilsiloxano (PDMS), un polímero de tipo silicona. Si se realiza un llenado selectivo asimétrico se puede inducir birrefringencia en la fibra. El índice de refracción del PDMS tiene una fuerte dependencia térmica, por lo que se puede sintonizar la birrefringencia de la fibra. • Estudio teórico de llenado selectivo de fibras fotónicas con PDMS dopado con nanopartículas de plata de 5, 40 y 80 nm. Estas nanopartículas poseen un pico de absorción en torno a los 450 nm debido a resonancias superficiales localizadas de plasmones (LSPR). La resonancia del plasmon tiene una fuerte dependencia con el índice de refracción del material colindante, y al ser éste PDMS, la variación de índice de refracción se ve amplificada, obteniendo una absorción sintonizable. Se ha propuesto la fabricación de polarizadores sintonizables usando esta técnica. Como ya se ha dicho, previamente a la fabricación ha sido necesaria la protocolización de diversos procedimientos de fabricación de alta complejidad, así como protocolizar el proceso de toma de medidas para optimizar los resultados. Los procedimientos que han requerido la formulación de protocolos específicos han sido los siguientes: • Llenado selectivo de cavidades en una fibra fotónica. Dichas fibras tienen generalmente un diámetro externo de 125 μm, y sus cavidades son de entre 5 y 10 μm de diámetro. Se han desarrollado tres técnicas diferentes para el llenado/bloqueado selectivo, pudiéndose combinar varios protocolos para la optimización del proceso. Las técnicas son las siguientes: o Llenado y bloqueado con un prepolímero. Dicho prepolímero, también llamado adhesivo óptico, está inicialmente en estado líquido y posee una cierta viscosidad. Las cavidades de la fibra fotónica que se desea llenar o bloquear poseen un diámetro diferente al resto, por lo que en el proceso de llenado aparecen dos frentes de llenado dependientes de su diámetro. A mayor diámetro, mayor velocidad de llenado. Polimerizando cuando existe dicha diferencia en los frentes se puede cortar por medio, obteniendo así una fibra parcialmente bloqueada. o Colapsamiento de las cavidades de menor diámetro mediante aplicación de calor. El calor producido por un arco voltaico de una soldadora de fibra estándar fusiona el material exterior de la fibra produciendo el colapsamiento de las cavidades de menor diámetro. En esta técnica también es necesaria una diferencia de diámetros en las cavidades de la fibra. o Bloqueo una a una de las cavidades de la fibra fotónica con adhesivo óptico. Este procedimiento es muy laborioso y requiere mucha precisión. Con este sistema se pueden bloquear las cavidades deseadas de una fibra sin importar su diámetro. • Alineación de una fuente de luz linealmente polarizada con una fibra mantenedora de polarización ya sea PANDA o fotónica. Así mismo también se han alineado entre sí fibras mantenedoras de polarización, para que sus ejes rápidos se fusionen paralelos y así el estado de polarización de la luz guiada se mantenga. • Sistematización de toma de medidas para caracterizar los interferómetros modales. Éstos son altamente sensibles a diversas variables por lo que el proceso de medida es complejo. Se deben aislar variables de forma estrictamente controlada. Aunque todos los dispositivos tienen en común el llenado selectivo de cavidades en una fibra fotónica cada dispositivo tiene sus peculiaridades, que van a ser explicadas a continuación. ABSTRACT The present Thesis has been centered in the design, fabrication and characterization of devices based on photonic crystal fibers selectively filled with liquid crystals, polymers and a mixture of both. All devices are tunable and their work field is optical communications and sensing The handling and splicing of photonic crystal fibers, the selective filling of their holes and the aligning of polarization maintaining fibers are very specific and delicate tasks for which very strict protocols are required. Before the fabrication of devices has therefore been necessary task systematization and creation of manufacturing protocols. Once established we have proceeded to the fabrication and characterization of devices. The fabricated devices are listed below and their peculiarities are detailed one by one: • Intermodal interferometers made with a portion of photonic crystal fiber spliced between two optical communication fiber pigtails, either single mode or PANDA (polarization-maintaining) fiber. These interferometers have been submerged or selectively filled with liquid crystals to tune the interferometric guided signal. • Infiltration of photonic fibers with cholesteric liquid crystals with special emphasis on their blue phase (blue phase). The liquid crystal molecules are self-aligning in volume so the infiltration of photonic fibers with these liquid crystals is very interesting. It is notoriously difficult to properly align liquid crystals within micron cavities such as photonic fibers. • Selectively recording of holographic gratings in the holes of photonic crystal fibers. These holographic gratings, called POLICRYPS (POlymer-LIquid CRYstal-Polymes Slices), are based on walls made of polymer and liquid crystal aligned perpendicular to them. These walls are perpendicular to the axis of the fiber as it can be a conventional Bragg grating. The liquid crystal is aligned perpendicular to the walls and parallel to the fiber axis, and can be switched by applying an external electric field and thus change the effective index of the grating. It is thus possible to manufacture a tunable Bragg grating fiber, useful in optical communications. •Asymmetrically selective filling of photonic crystal fibers with a silicone polymer like called polydimethylsiloxane (PDMS) to induce birefringence in the fiber. The refractive index of PDMS has temperature dependence, so that the birefringence of the fiber can be tuned. • Theoretical study of photonic crystal fibers selectively filled with PDMS doped with silver nanoparticles of 5, 40 and 80 nm. These nanoparticles have an absorption peak around 450 nm due to localized surface plasmon resonances (LSPR). Plasmon resonance has a strong dependence on the refractive index of the adjacent material, and as this is PDMS, the refractive index variation is amplified, obtaining a tunable absorption. Fabrication of tunable polarizers using this technique has been proposed. Before starting the fabrication, it has been necessary to optimize several very delicate procedures and different protocols have been designed. The most delicate procedures are as follows: • Selective filling of holes in a photonic crystal fiber. These fibers generally have an outer diameter of 125 μm, and their holes have a diameter around between 5 and 10 μm. It has been developed three different techniques for filling / selective blocking, and they can be combined for process optimization. The techniques are: o Filling and blocked with a prepolymer. This prepolymer also called optical adhesive is initially in liquid state and has a certain viscosity. The holes of the photonic crystal fiber that are desired to be filled or blocked should have a different diameter, so that in the filling process appear two different fronts depending on the hole diameter. The holes with larger diameter are filled faster. Then the adhesive is polymerized when there is such a difference on the front. A partially blocked fiber is obtained cutting between fronts. o Collapsing of holes of smaller diameter by application of heat. The heat produced by an arc of a standard fusion splicer fuses the outer fiber material producing the collapsing of the cavities of smaller diameter. In this technique also you need a difference of diameters in the fiber holes. o Blocking one by one the holes of photonic crystal fiber with optical adhesive. This procedure is very laborious and requires great precision. This system can block unwanted cavities regardless fiber diameter. • Aligning a linearly polarized light source with a polarization-maintaining fiber (either a PANDA fiber as a photonic crystal fiber). It is needed also an aligning between polarization-maintaining fibers, so that their fast axes parallel merge and that is state of polarization of light guided is maintained. • Systematization of taking measurements to characterize the modal interferometers. These are highly sensitive to several variables so the measurement process is very complicated. Variables must be fixed in a very controlled manner. Although all devices have the common characteristic of being selectively filled PCFs with some kind of material, each one has his own peculiarities, which are explained below.
Resumo:
En el estudio de la propagación transversal de una radiación luminosa a través de un capilar con cristal líquido nemático, y cuyas moléculas se encuentran orientadas homeotrópicamente con respecto a las paredes internas de dicho capilar es necesario conocer de forma exacta la distribución espacial del director de cada una de las moléculas contenidas en el mismo. Esta distribución ha sido obtenida de forma empírica por Scudieri interpretando los resultados mediante la suposición de "lente delgada". Experimentalmente, mediante técnicas interferométricas, se obtienen dos grupos de franjas correspondiendo uno al índice de refraccción ordinario y siendo el otro función del ordinario y del extraordinario. El análisis de estas franjas es de una gran importancia a la hora de aplicar estructuras como la presente en Optica Integrada, ya que de ellas se puede inferir cuál es la respuesta de las moléculas de cristal líquido frente a campos externos, conocidos los valores del índice de refracción.
Resumo:
Este trabajo se ha centrado en el diseño de celdas de reflectarray reconfigurables basadas en cristal líquido que superan las limitaciones en las celdas descritas en el estado del arte, concernientes al rango de fase, ancho de banda, pérdidas, tiempos de conmutación e inestabilidades en la fase de los estados intermedios del cristal líquido. Para ello, tras una evaluación de las diferentes estrategias de análisis electromagnético de este tipo de celdas, y tras un estudio de las propiedades físicas de los cristales líquidos, se ha demostrado la viabilidad en el empleo de elementos multiresonantes (monocapa y multicapa) como estructuras que permiten eliminar las limitaciones inherentes al elemento resonante simple en cuanto a rango de fase, ancho de banda y pérdidas. Además, mediante el uso exclusivo de los estados estables del cristal líquido, este tipo de elementos permiten también superar la limitación asociada a la inestabilidad de los estados intermedios, ya que el uso de "n" metalizaciones con control independiente permiten obtener un número de estados igual a 2^n, que pueden resultar suficientes para sintetizar los estados intermedios, y garantizar el cumplimiento de las especificaciones de una determinada aplicación con un número reducido de metalizaciones. En cuanto a los tiempos de conmutación, se proponen estructuras y estrategias de polarización que permiten su mejora.
Resumo:
En este artículo se presenta un análisis del realineamiento inducido por campos magnéticos aplicados sobre estructuras cilíndricas de cristal líquido nemático. Se analizan las dos posibles configuraciones moleculares, homeotrópica y homogénea,con campos longitudinales y transversales aplicados a ellas. Los resultados más significativos son la aparición de un campo umbral, para configuraciones homogéneas y campos transversales, y de un plano de moléculas que no sufren reorientación, para configuraciones homeotrópicas y campos transversales.
Resumo:
If only Fluid Mechanics aspects are considered, the configuration appearing in the floating zone technique for crystal growth can be modelled as a mass of liquid spanning between two solid rods. Besides, if now the influence of temperature gradients and heat flow are not considered, the simplest fluid model consists of an isothermal liquid mass of constant properties (density and surface tension) held by capillary forces between two solid disks placed a distance L apart: the so called liquid bridge. As it is well known, if both supporting disks were parallel, coaxial and of the same diameter, 2R, the volume of liquid, V, were equal to that of a cylinder of the same L and R (V=KR~L) and no body forces were acting on the liquid column, the fluid configuration (under these conditions of cylindrical shape) will become unstable when the distance between the disks equals the length of the circumference of the supporting disks (L=2KR, the so-called Rayleigh stability limit). One should be aware that the Rayleigh stability limit can be dramatically modified when the geometry differs from the above described cylinder (due to having non-coaxial disks, different diameter disks, liquid volume different from the cylindrical one, etc) or when other external effects like accelerations either axial or lateral are considered. In this paper the stability limits of liquid bridges considering different types of perturbations are reviewed.