6 resultados para body without organs
em Universidad Politécnica de Madrid
Resumo:
La relación entre la ingeniería y la medicina cada vez se está haciendo más estrecha, y debido a esto se ha creado una nueva disciplina, la bioingeniería, ámbito en el que se centra el proyecto. Este ámbito cobra gran interés debido al rápido desarrollo de nuevas tecnologías que en particular permiten, facilitan y mejoran la obtención de diagnósticos médicos respecto de los métodos tradicionales. Dentro de la bioingeniería, el campo que está teniendo mayor desarrollo es el de la imagen médica, gracias al cual se pueden obtener imágenes del interior del cuerpo humano con métodos no invasivos y sin necesidad de recurrir a la cirugía. Mediante métodos como la resonancia magnética, rayos X, medicina nuclear o ultrasonidos, se pueden obtener imágenes del cuerpo humano para realizar diagnósticos. Para que esas imágenes puedan ser utilizadas con ese fin hay que realizar un correcto tratamiento de éstas mediante técnicas de procesado digital. En ése ámbito del procesado digital de las imágenes médicas es en el que se ha realizado este proyecto. Gracias al desarrollo del tratamiento digital de imágenes con métodos de extracción de información, mejora de la visualización o resaltado de rasgos de interés de las imágenes, se puede facilitar y mejorar el diagnóstico de los especialistas. Por todo esto en una época en la que se quieren automatizar todos los procesos para mejorar la eficacia del trabajo realizado, el automatizar el procesado de las imágenes para extraer información con mayor facilidad, es muy útil. Actualmente una de las herramientas más potentes en el tratamiento de imágenes médicas es Matlab, gracias a su toolbox de procesado de imágenes. Por ello se eligió este software para el desarrollo de la parte práctica de este proyecto, su potencia y versatilidad simplifican la implementación de algoritmos. Este proyecto se estructura en dos partes. En la primera se realiza una descripción general de las diferentes modalidades de obtención de imágenes médicas y se explican los diferentes usos de cada método, dependiendo del campo de aplicación. Posteriormente se hace una descripción de las técnicas más importantes de procesado de imagen digital que han sido utilizadas en el proyecto. En la segunda parte se desarrollan cuatro aplicaciones en Matlab para ejemplificar el desarrollo de algoritmos de procesado de imágenes médicas. Dichas implementaciones demuestran la aplicación y utilidad de los conceptos explicados anteriormente en la parte teórica, como la segmentación y operaciones de filtrado espacial de la imagen, así como otros conceptos específicos. Las aplicaciones ejemplo desarrolladas han sido: obtención del porcentaje de metástasis de un tejido, diagnóstico de las deformidades de la columna vertebral, obtención de la MTF de una cámara de rayos gamma y medida del área de un fibroadenoma de una ecografía de mama. Por último, para cada una de las aplicaciones se detallará su utilidad en el campo de la imagen médica, los resultados obtenidos y su implementación en una interfaz gráfica para facilitar su uso. ABSTRACT. The relationship between medicine and engineering is becoming closer than ever giving birth to a recently appeared science field: bioengineering. This project is focused on this subject. This recent field is becoming more and more important due to the fast development of new technologies that provide tools to improve disease diagnosis, with regard to traditional procedures. In bioengineering the fastest growing field is medical imaging, in which we can obtain images of the inside of the human body without need of surgery. Nowadays by means of the medical modalities of magnetic resonance, X ray, nuclear medicine or ultrasound, we can obtain images to make a more accurate diagnosis. For those images to be useful within the medical field, they should be processed properly with some digital image processing techniques. It is in this field of digital medical image processing where this project is developed. Thanks to the development of digital image processing providing methods for data collection, improved visualization or data highlighting, diagnosis can be eased and facilitated. In an age where automation of processes is much sought, automated digital image processing to ease data collection is extremely useful. One of the most powerful image processing tools is Matlab, together with its image processing toolbox. That is the reason why that software was chosen to develop the practical algorithms in this project. This final project is divided into two main parts. Firstly, the different modalities for obtaining medical images will be described. The different usages of each method according to the application will also be specified. Afterwards we will give a brief description of the most important image processing tools that have been used in the project. Secondly, four algorithms in Matlab are implemented, to provide practical examples of medical image processing algorithms. This implementation shows the usefulness of the concepts previously explained in the first part, such as: segmentation or spatial filtering. The particular applications examples that have been developed are: calculation of the metastasis percentage of a tissue, diagnosis of spinal deformity, approximation to the MTF of a gamma camera, and measurement of the area of a fibroadenoma in an ultrasound image. Finally, for each of the applications developed, we will detail its usefulness within the medical field, the results obtained, and its implementation in a graphical user interface to ensure ease of use.
Resumo:
Los objetivos de esta tesis fueron 1) obtener y validar ecuaciones de predicción para determinar in vivo la composición corporal y de la canal de conejos en crecimiento de 25 a 77 días de vida utilizando la técnica de la Impedancia Bioeléctrica (BIA), y 2) evaluar su aplicación para determinar diferencias en la composición corporal y de la canal, así como la retención de nutrientes de animales alimentados con diferentes fuentes y niveles de grasa. El primer estudio se realizó para determinar y después validar, usando datos independientes, las ecuaciones de predicción obtenidas para determinar in vivo la composición corporal de los conejos en crecimiento. Se utilizaron 150 conejos a 5 edades distintas (25, 35, 49, 63 y 77 días de vida), con un rango de pesos entre 231 y 3138 g. Para determinar los valores de resistencia (Rs,) and reactancia (Xc,) se usó un terminal (Model BIA-101, RJL Systems, Detroit, MI USA) con cuatro electrodos. Igualmente se registró la distancia entre electrodos internos (D), la longitud corporal (L) y el peso vivo (PV) de cada animal. En cada edad, los animales fueron molidos y congelados (-20 ºC) para su posterior análisis químico (MS, grasa, proteína, cenizas y EB). El contenido en grasa y energía de los animales se incrementó, mientras que los contenidos en proteína, cenizas y agua de los animales disminuyeron con la edad. Los valores medios de Rs, Xc, impedancia (Z), L y D fueron 83.5 ± 23.1 , 18.2 ± 3.8 , 85.6 ± 22.9 , 30.6 ± 6.9 cm y 10.8 ± 3.1 cm. Se realizó un análisis de regresión lineal múltiple para determinar las ecuaciones de predicción, utilizando los valores de PV, L and Z como variables independientes. Las ecuaciones obtenidas para estimar los contenidos en agua (g), PB (g), grasa (g), cenizas (g) and EB (MJ) tuvieron un coeficiente de determinación de (R2) de 0.99, 0.99, 0.97, 0.98 y 0.99, y los errores medios de predicción relativos (EMPR) fueron: 2.79, 6.15, 24.3, 15.2 y 10.6%, respectivamente. Cuando el contenido en agua se expresó como porcentaje, los valores de R2 y EMPR fueron 0.85 and 2.30%, respectivamente. Al predecir los contenidos en proteína (%MS), grasa (%MS), cenizas (%MS) y energía (kJ/100 g MS), se obtuvieron valores de 0.79, 0.83, 0.71 y 0.86 para R2, y 5.04, 18.9, 12.0 y 3.19% para EMPR. La reactancia estuvo negativamente correlacionada con el contenido en agua, cenizas y PB (r = -0.32, P < 0.0001; r = -0.20, P < 0.05; r = -0.26, P < 0.01) y positivamente correlacionada con la grasa y la energía (r = 0.23 y r = 0.24; P < 0.01). Sin embargo, Rs estuvo positivamente correlacionada con el agua, las cenizas y la PB (r = 0.31, P < 0.001; r = 0.28, P < 0.001; r = 0.37, P < 0.0001) y negativamente con la grasa y la energía (r = -0.36 y r = -0.35; P < 0.0001). Igualmente la edad estuvo negativamente correlacionada con el contenido en agua, cenizas y proteína (r = -0.79; r = -0.68 y r = -0.80; P < 0.0001) y positivamente con la grasa y la energía (r = 0.78 y r = 0.81; P < 0.0001). Se puede concluir que el método BIA es una técnica buena y no invasiva para estimar in vivo la composición corporal de conejos en crecimiento de 25 a 77 días de vida. El objetivo del segundo estudio fue determinar y validar con datos independientes las ecuaciones de predicción obtenidas para estimar in vivo la composición de la canal eviscerada mediante el uso de BIA en un grupo de conejos de 25 a 77 días, así como testar su aplicación para predecir la retención de nutrientes y calcular las eficacias de retención de la energía y del nitrógeno. Se utilizaron 75 conejos agrupados en 5 edades (25, 35, 49, 63 y 77 días de vida) con unos pesos que variaron entre 196 y 3260 g. Para determinar los valores de resistencia (Rs, ) y reactancia (Xc, ) se usó un terminal (Model BIA-101, RJL Systems, Detroit, MI USA) con cuatro electrodos. Igualmente se registró la distancia entre electrodos internos (D), la longitud corporal (L) y el peso vivo (PV) del cada animal. En cada edad, los animales fueron aturdidos y desangrados. Su piel, vísceras y contenido digestivo fueron retirados, y la canal oreada fue pesada y molida para posteriores análisis (MS, grasa, PB, cenizas y EB). Los contenidos en energía y grasa aumentaron mientras que los de agua, cenizas y proteína disminuyeron con la edad. Los valores medios de Rs, Xc, impedancia (Z), L y D fueron 95.9±23.9 , 19.5±4.7 , 98.0±23.8 , 20.6±6.3 cm y 13.7±3.1 cm. Se realizó un análisis de regresión linear múltiple para determinar las ecuaciones de predicción, utilizando los valores de PV, L and Z como variables independientes. Los coeficientes de determinación (R2) de las ecuaciones obtenidas para estimar los contenidos en agua (g), PB (g), grasa (g), cenizas (g) and EB (MJ) fueron: 0.99, 0.99, 0.95, 0.96 y 0.98, mientras que los errores medios de predicción relativos (EMPR) fueron: 4.20, 5.48, 21.9, 9.10 y 6.77%, respectivamente. Cuando el contenido en agua se expresó como porcentaje, los valores de R2 y EMPR fueron 0.79 y 1.62%, respectivamente. Cuando se realizó la predicción de los contenidos en proteína (%MS), grasa (%MS), cenizas (%MS) y energía (kJ/100 g MS), los valores de R2 fueron 0.68, 0.76, 0.66 and 0.82, y los de RMPE: 3.22, 10.5, 5.82 and 2.54%, respectivamente. La reactancia estuvo directamente correlacionada con el contenido en grasa (r = 0.24, P < 0.05), mientras que la resistencia guardó una correlación positiva con los contenidos en agua, cenizas y proteína (r = 0.55, P < 0.001; r = 0.54, P < 0.001; r = 0.40, P < 0.005) y negativa con la grasa y la energía (r = -0.44 y r = -0.55; P < 0.001). Igualmente la edad estuvo negativamente correlacionada con los contenidos en agua, cenizas y PB (r = -0.94; r = -0.85 y r = -0.75; P < 0.0001) y positivamente con la grasa y la energía (r = 0.89 y r = 0.90; P < 0.0001). Se estudió la eficacia global de retención de la energía (ERE) y del nitrógeno (ERN) durante todo el periodo de cebo (35-63 d), Los valores de ERE fueron 20.4±7.29%, 21.0±4.18% and 20.8±2.79% en los periodos 35 a 49, 49 a 63 y 35 a 63 d, respectivamente. ERN fue 46.9±11.7%, 34.5±7.32% y 39.1±3.23% para los mismos periodos. La energía fue retenida en los tejidos para crecimiento con una eficiencia del 52.5% y la eficiencia de retención de la energía como proteína y grasa fue de 33.3 y 69.9% respectivamente. La eficiencia de utilización del nitrógeno para crecimiento fue cercana al 77%. Este trabajo muestra como el método BIA es técnica buena y no invasiva para determinar in vivo la composición de la canal y la retención de nutrientes en conejos en crecimiento de 25 a 77 días de vida. En el tercer estudio, se llevaron a cabo dos experimentos con el fin de investigar los efectos del nivel de inclusión y de la fuente de grasa, sobre los rendimientos productivos, la mortalidad, la retención de nutrientes y la composición corporal total y de la canal eviscerada de conejos en crecimiento de 34 a 63 d de vida. En el Exp. 1 se formularon 3 dietas con un diseño experimental factorial 3 x 2 con el tipo de grasa utilizada: Aceite de Soja (SBO), Lecitinas de Soja (SLO) y Manteca (L) y el nivel de inclusión (1.5 y 4%) como factores principales. El Exp. 2 también fue diseñado con una estructura factorial 3 x 2, pero usando SBO, Aceite de Pescado (FO) y Aceite de Palmiste como fuentes de grasa, incluidas a los mismos niveles que en el Exp. 1. En ambos experimentos 180 animales fueron alojados en jaulas individuales (n=30) y 600 en jaulas colectivas en grupos de 5 animales (n=20). Los animales alimentados con un 4% de grasa añadida tuvieron unos consumos diarios y unos índices de conversión más bajos que aquellos alimentados con las dietas con un 1.5% de grasa. En los animales alojados en colectivo del Exp. 1, el consumo fue un 4.8% más alto en los que consumieron las dietas que contenían manteca que en los animales alimentados con las dietas SBO (P = 0.036). La inclusión de manteca tendió a reducir la mortalidad (P = 0.067) en torno al 60% y al 25% con respecto a las dietas con SBO y SLO, respectivamente. La mortalidad aumentó con el nivel máximo de inclusión de SLO (14% vs. 1%, P < 0.01), sin observarse un efecto negativo sobre la mortalidad con el nivel más alto de inclusión de las demás fuentes de grasa utilizadas. En los animales alojados colectivo del Exp. 2 se encontró una disminución del consumo (11%), peso vivo a 63 d (4.8%) y de la ganancia diaria de peso (7.8%) con la inclusión de aceite de pescado con respecto a otras dietas (P < 0.01). Los dos últimos parámetros se vieron especialmente más reducidos cuando en las dietas se incluyó el nivel más alto de FO (5.6 y 9.5%, respectivamente, (P < 0.01)). Los animales alojados individualmente mostraron unos resultados productivos muy similares. La inclusión de aceite pescado tendió (P = 0.078) a aumentar la mortalidad (13.2%) con respecto al aceite de palmiste (6.45%), siendo intermedia para las dietas que contenían SBO (8.10%). La fuente o el nivel de grasa no afectaron la composición corporal total o de la canal eviscerada de los animales. Un incremento en el nivel de grasa dio lugar a una disminución de la ingesta de nitrógeno digestible (DNi) (1.83 vs. 1.92 g/d; P = 0.068 en Exp. 1 y 1.79 vs. 1.95 g/d; P = 0.014 en Exp. 2). Debido a que el nitrógeno retenido (NR) en la canal fue similar para ambos niveles (0.68 g/d (Exp. 1) y 0.71 g/d (Exp. 2)), la eficacia total de retención del nitrógeno (ERN) aumentó con el nivel máximo de inclusión de grasa, pero de forma significativa únicamente en el Exp. 1 (34.9 vs. 37.8%; P < 0.0001), mientras que en el Exp. 2 se encontró una tendencia (36.2 vs. 38.0% en Exp. 2; P < 0.064). Como consecuencia, la excreción de nitrógeno en heces fue menor en los animales alimentados con el nivel más alto de grasa (0.782 vs. 0.868 g/d; P = 0.0001 en Exp. 1, y 0.745 vs. 0.865 g/d; P < 0.0001 en Exp.2) al igual que el nitrógeno excretado en orina (0.702 vs. 0.822 g/d; P < 0.0001 en Exp. 1 y 0.694 vs. 0.7999 g/d; P = 0.014 en Exp.2). Aunque no hubo diferencias en la eficacia total de retención de la energía (ERE), la energía excretada en heces disminuyó al aumentar el nivel de inclusión de grasa (142 vs. 156 Kcal/d; P = 0.0004 en Exp. 1 y 144 vs. 154 g/d; P = 0.050 en Exp. 2). Sin embargo, la energía excretada como orina y en forma de calor fue mayor en el los animales del Exp. 1 alimentados con el nivel más alto de grasa (216 vs. 204 Kcal/d; P < 0.017). Se puede concluir que la manteca y el aceite de palmiste pueden ser considerados como fuentes alternativas al aceite de soja debido a la reducción de la mortalidad, sin efectos negativos sobre los rendimientos productivos o la retención de nutrientes. La inclusión de aceite de pescado empeoró los rendimientos productivos y la mortalidad durante el periodo de crecimiento. Un aumento en el nivel de grasa mejoró el índice de conversión y la eficacia total de retención de nitrógeno. ABSTRACT The aim of this Thesis is: 1) to obtain and validate prediction equations to determine in vivo whole body and carcass composition using the Bioelectrical Impedance (BIA) method in growing rabbits from 25 to 77 days of age, and 2) to study its application to determine differences on whole body and carcass chemical composition, and nutrient retention of animals fed different fat levels and sources. The first study was conducted to determine and later validate, by using independent data, the prediction equations obtained to assess in vivo the whole body composition of growing rabbits. One hundred and fifty rabbits grouped at 5 different ages (25, 35, 49, 63 and 77 days) and weighing from 231 to 3138 g were used. A four terminal body composition analyser was used to obtain resistance (Rs, ) and reactance (Xc, ) values (Model BIA-101, RJL Systems, Detroit, MI USA). The distance between internal electrodes (D, cm), body length (L, cm) and live BW of each animal were also registered. At each selected age, animals were slaughtered, ground and frozen (-20 ºC) for later chemical analyses (DM, fat, CP, ash and GE). Fat and energy body content increased with the age, while protein, ash, and water decreased. Mean values of Rs, Xc, impedance (Z), L and D were 83.5 ± 23.1 , 18.2 ± 3.8 , 85.6 ± 22.9 , 30.6 ± 6.9 cm and 10.8 ± 3.1 cm. A multiple linear regression analysis was used to determine the prediction equations, using BW, L and Z data as independent variables. Equations obtained to estimate water (g), CP (g), fat (g), ash (g) and GE (MJ) content had, respectively, coefficient of determination (R2) values of 0.99, 0.99, 0.97, 0.98 and 0.99, and the relative mean prediction error (RMPE) was: 2.79, 6.15, 24.3, 15.2 and 10.6%, respectively. When water was expressed as percentage, the R2 and RMPE were 0.85 and 2.30%, respectively. When prediction of the content of protein (%DM), fat (%DM), ash (%DM) and energy (kJ/100 g DM) was done, values of 0.79, 0.83, 0.71 and 0.86 for R2, and 5.04, 18.9, 12.0 and 3.19% for RMPE, respectively, were obtained. Reactance was negatively correlated with water, ash and CP content (r = -0.32, P < 0.0001; r = -0.20, P < 0.05; r = -0.26, P < 0.01) and positively correlated with fat and GE (r = 0.23 and r = 0.24; P < 0.01). Otherwise, resistance was positively correlated with water, ash and CP (r = 0.31, P < 0.001; r = 0.28, P < 0.001; r = 0.37, P < 0.0001) and negatively correlated with fat and energy (r = -0.36 and r = -0.35; P < 0.0001). Moreover, age was negatively correlated with water, ash and CP content (r = -0.79; r = -0.68 and r = -0.80; P < 0.0001) and positively correlated with fat and energy (r = 0.78 and r = 0.81; P < 0.0001). It could be concluded that BIA is a non-invasive good method to estimate in vivo whole body composition of growing rabbits from 25 to 77 days of age. The aim of the second study was to determine and validate with independent data, the prediction equations obtained to estimate in vivo carcass composition of growing rabbits by using the results of carcass chemical composition and BIA values in a group of rabbits from 25 to 77 days. Also its potential application to predict nutrient retention and overall energy and nitrogen retention efficiencies was analysed. Seventy five rabbits grouped at 5 different ages (25, 35, 49, 63 and 77 days) with weights ranging from 196 to 3260 g were used. A four terminal body composition analyser (Model BIA-101, RJL Systems, Detroit, MI USA) was used to obtain resistance (Rs, ) and reactance (Xc, ) values. The distance between internal electrodes (D, cm), body length (L, cm) and live weight (BW, g) were also registered. At each selected age, all the animals were stunned and bled. The skin, organs and digestive content were removed, and the chilled carcass were weighed and processed for chemical analyses (DM, fat, CP, ash and GE). Energy and fat increased with the age, while CP, ash, and water decreased. Mean values of Rs, Xc, impedance (Z), L and D were 95.9±23.9 , 19.5±4.7 , 98.0±23.8 , 20.6±6.3 cm y 13.7±3.1 cm. A multiple linear regression analysis was done to determine the equations, using BW, L and Z data as parameters. Coefficient of determination (R2) of the equations obtained to estimate water (g), CP (g), fat (g), ash (g) and GE (MJ) content were: 0.99, 0.99, 0.95, 0.96 and 0.98, and relative mean prediction error (RMPE) were: 4.20, 5.48, 21.9, 9.10 and 6.77%, respectively. When water content was expressed as percentage, the R2 and RMPE were 0.79 and 1.62%, respectively. When prediction of protein (%DM), fat (%DM), ash (%DM) and energy (kJ/100 g DM) content was done, R2 values were 0.68, 0.76, 0.66 and 0.82, and RMPE: 3.22, 10.5, 5.82 and 2.54%, respectively. Reactance was positively correlated with fat content (r = 0.24, P < 0.05) while resistance was positively correlated with water, ash and protein carcass content (r = 0.55, P < 0.001; r = 0.54, P < 0.001; r = 0.40, P < 0.005) and negatively correlated with fat and energy (r = -0.44 and r = -0.55; P < 0.001). Moreover, age was negatively correlated with water, ash and CP content (r = -0.97, r = -0.95 and r = -0.89, P < 0.0001) and positively correlated with fat and GE (r = 0.95 and r = 0.97; P < 0.0001). In the whole growing period (35-63 d), overall energy retention efficiency (ERE) and nitrogen retention efficiency (NRE) were studied. The ERE values were 20.4±7.29%, 21.0±4.18% and 20.8±2.79%, from 35 to 49, 49 to 63 and from 35 to 63 d, respectively. NRE was 46.9±11.7%, 34.5±7.32% and 39.1±3.23% for the same periods. Energy was retained in body tissues for growth with an efficiency of approximately 52.5% and efficiency of the energy for protein and fat retention was 33.3 and 69.9%, respectively. Efficiency of utilization of nitrogen for growth was near to 77%. This work shows that BIA it’s a non-invasive and good method to estimate in vivo carcass composition and nutrient retention of growing rabbits from 25 to 77 days of age. In the third study, two experiments were conducted to investigate the effect of the fat addition and source, on performance, mortality, nutrient retention, and the whole body and carcass chemical composition of growing rabbits from 34 to 63 d. In Exp. 1 three diets were arranged in a 3 x 2 factorial structure with the source of fat: Soybean oil (SBO), Soya Lecithin Oil (SLO) and Lard (L) and the dietary fat inclusion level (1.5 and 4%) as the main factors. Exp. 2 had also arranged as a 3 x 2 factorial design, but using SBO, Fish Oil (FO) and Palmkernel Oil (PKO) as fat sources, and included at the same levels than in Exp. 1. In both experiments 180 animals were allocated in individual cages (n=30) and 600 in collectives cages, in groups of 5 animals (n=20). Animals fed with 4% dietary fat level showed lower DFI and FCR than those fed diets with 1.5%. In collective housing of Exp. 1, DFI was a 4.8% higher in animals fed with diets containing lard than SBO (P = 0.036), being intermediate for diet with SLO. Inclusion of lard also tended to reduce mortality (P = 0.067) around 60% and 25% with respect SBO and SLO diets, respectively. Mortality increased with the greatest level of soya lecithin (14% vs. 1%, P < 0.01). In Exp. 2 a decrease of DFI (11%), BW at 63 d (4.8%) and DWG (7.8%) were observed with the inclusion of fish oil with respect the other two diets (P < 0.01). These last two traits impaired with the highest level of fish oil (5.6 and 9.5%, respectively, (P < 0.01)). Animals housed individually showed similar performance results. The inclusion of fish oil also tended to increase (P = 0.078) mortality (13.2%) with respect palmkernel oil (6.45%), being mortality of SBO intermediate (8.10%). Fat source and level did not affect the whole body or carcass chemical composition. An increase of the fat sources addition led to a decrease of the digestible nitrogen intake (DNi) (1.83 vs. 1.92 g/d; P = 0.068 in Exp. 1 and 1.79 vs. 1.95 g/d; P = 0.014 in Exp. 2). As the nitrogen retained (NR) in the carcass was similar for both fat levels (0.68 g/d (Exp. 1) and 0.71 g/d (Exp. 2)), the overall efficiency of N retention (NRE) increased with the highest level of fat, but only reached significant level in Exp. 1 (34.9 vs. 37.8%; P < 0.0001), while in Exp. 2 a tendency was found (36.2 vs. 38.0% in Exp. 2; P < 0.064). Consequently, nitrogen excretion in faeces was lower in animals fed with the highest level of fat (0.782 vs. 0.868 g/d; P = 0.0001 in Exp. 1, and 0.745 vs. 0.865 g/d; P < 0.0001 in Exp.2). The same effect was observed with the nitrogen excreted as urine (0.702 vs. 0.822 g/d; P < 0.0001 in Exp. 1 and 0.694 vs. 0.7999 g/d; P = 0.014 in Exp.2). Although there were not differences in ERE, the energy excreted in faeces decreased as fat level increased (142 vs. 156 Kcal/d; P = 0.0004 in Exp. 1 and 144 vs. 154 g/d; P = 0.050 in Exp. 2). In Exp. 1 the energy excreted as urine and heat production was significantly higher when animals were fed with the highest level of dietary fat (216 vs. 204 Kcal/d; P < 0.017). It can be concluded that lard and palmkernel oil can be considered as alternative sources to soybean oil due to the reduction of the mortality, without negative effects on performances or nutrient retention. Inclusion of fish impaired animals´ productivity and mortality. An increase of the dietary fat level improved FCR and overall protein efficiency retention.
Resumo:
Introduction. Most studies have described how the weight loss is when different treatments are compared (1-3), while others have also compared the weight loss by sex (4), or have taken into account psychosocial (5) and lifestyle (6, 7) variables. However, no studies have examined the interaction of different variables and the importance of them in the weight loss. Objective. Create a model to discriminate the range of weight loss, determining the importance of each variable. Methods. 89 overweight people (BMI: 25-29.9 kg?m-2), aged from 18 to 50 years, participated in the study. Four types of treatments were randomly assigned: strength training (S), endurance training (E), strength and endurance training (SE), and control group (C). All participants followed a 25% calorie restriction diet. Two multivariate discriminant models including the variables age, sex, height, daily energy expenditure (EE), type of treatment (T), caloric restriction (CR), initial body weight (BW), initial fat mass (FM), initial muscle mass (MM) and initial bone mineral density (BMD) were performed having into account two groups: the first and fourth quartile of the % of weight loss in the first model; the groups above and below the mean of the % of weight loss in the second model. The discriminant models were built using the inclusion method in SPSS allowing us to find a function that could predict the body weight loss range that an overweight person could achieve in a 6 months weight loss intervention.Results. The first discriminant analysis predicted that a combination of the studied variables would discriminate between the two ranges of body weight loss with 81.4% of correct classification. The discriminant function obtained was (Wilks? Lambda=0.475, p=0.003): Discriminant score=-18.266-(0.060xage)- (1.282xsex[0=female;1=male])+(14.701xheight)+(0.002xEE)- (0.006xT[1=S;2=E;3=SE;4=C])-(0.047xCR)- (0.558xBW)+(0.475xFM)+(0.398xMM)+(3.499xBMD) The second discriminant model obtained would discriminate between the two groups of body weight loss with 74.4% of correct classification. The discriminant function obtained was (Wilks? Lambda=0.725, p=0.005): Discriminant score=-5.021-(0.052xage)- (0.543xsex[0=female;1=male])+(3.530xheight)+(0.001xEE)- (0.493xT[1=S;2=E;3=SE;4=C])+(0.003xCR)- (0.365xBW)+(0.368xFM)+(0.296xMM)+(4.034xBMD) Conclusion. The first developed model could predict the percentage of weight loss in the following way: if the discriminant score is close to 1.051, the range of weight loss will be from 7.44 to -4.64% and if it is close to - 1.003, the range will be from -11.03 to -25,00% of the initial body weight. With the second model if the discriminant score is close to 0.623 the body weight loss will be above -7.93% and if it is close to -0.595 will be below - 7.93% of the initial body weight. References. 1. Brochu M, et al. Resistance training does not contribute to improving the metabolic profile after a 6-month weight loss program in overweight and obese postmenopausal women. J Clin Endocrinol Metab. 2009 Sep;94(9):3226-33. 2. Del Corral P, et al. Effect of dietary adherence with or without exercise on weight loss: a mechanistic approach to a global problem. J Clin Endocrinol Metab. 2009 May;94(5):1602-7. 3. Larson-Meyer DE, et al. Caloric Restriction with or without Exercise: The Fitness vs. Fatness Debate. Med Sci Sports Exerc. 2010;42(1):152-9. 4. Hagan RD, et al. The effects of aerobic conditioning and/or caloric restriction in overweight men and women. Medicine & Science in Sports & Exercise. 1986;18(1):87-94. 5. Teixeira PJ, et al. Mediators of weight loss and weight loss maintenance in middle-aged women. Obesity (Silver Spring). 2010 Apr;18(4):725-35. 6. Bautista-Castano I, et al. Variables predictive of adherence to diet and physical activity recommendations in the treatment of obesity and overweight, in a group of Spanish subjects. Int J Obes Relat Metab Disord. 2004 May;28(5):697-705.
Resumo:
We present and validate a test able to provide reliable body sway measurements in air pistol shooting, without the use of a gun. 46 senior male pistol shooters who participated in Spanish air pistol championships participated in the study. Body sway data of two static bipodal balance tests have been compared: during the first test, shooting was simulated by use of a dumbbell, while during the second test the shooters own pistol was used. Both tests were performed the day previous to the competition, during the official training time and at the training stands to simulate competition conditions. The participants performance was determined as the total score of 60 shots at competition. Apart from the commonly used variables that refer to movements of the shooters centre of pressure (COP), such as COP displacements on the X and Y axes, maximum and average COP velocities and total COP area, the present analysis also included variables that provide information regarding the axes of the COP ellipse (length and angle in respect to X). A strong statistically significant correlation between the two tests was found (with an interclass correlation varying between 0.59 and 0.92). A statistically significant inverse linear correlation was also found between performance and COP movements. The study concludes that dumbbell tests are perfectly valid for measuring body sway by simulating pistol shooting.
Resumo:
Physical activity for pregnant women should be controlled and adapted in order to minimize the risk of loss of balance and fetal trauma (Davies, Wolfe, Mottola, y MacKinnon, 2003). Noninvasive technologies are required for understanding better the effects of physical activity on pregnant women. Infrared thermography allows, remotely, securely and without any contact, to measure and display accurate temperatures on the human skin.
Resumo:
Blended-wing-body (BWB) aircraft are being studied with interest and effort to improve economic efficiency and to overcome operational and infrastructure related problems associated to the increasing size of conventional transport airplanes. The objective of the research reported here is to assess the aerodynamic feasibility and operational efficiency of a great size, blended wing body layout, a configuration which has many advantages. To this end, the conceptual aerodynamic design process of an 800 seat BWB has been done completed with a comparison of performance and operational issues with last generation of conventional very large aircraft. The results are greatly encouraging and predict about 20 percent increase in transport productivity efficiency, without the burden of new or aggravated safety or operational problems.