5 resultados para blind source separation

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetoencephalogram (MEG) is contaminated with undesired signals, which are called artifacts. Some of the most important ones are the cardiac and the ocular artifacts (CA and OA, respectively), and the power line noise (PLN). Blind source separation (BSS) has been used to reduce the influence of the artifacts in the data. There is a plethora of BSS-based artifact removal approaches, but few comparative analyses. In this study, MEG background activity from 26 subjects was processed with five widespread BSS (AMUSE, SOBI, JADE, extended Infomax, and FastICA) and one constrained BSS (cBSS) techniques. Then, the ability of several combinations of BSS algorithm, epoch length, and artifact detection metric to automatically reduce the CA, OA, and PLN were quantified with objective criteria. The results pinpointed to cBSS as a very suitable approach to remove the CA. Additionally, a combination of AMUSE or SOBI and artifact detection metrics based on entropy or power criteria decreased the OA. Finally, the PLN was reduced by means of a spectral metric. These findings confirm the utility of BSS to help in the artifact removal for MEG background activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Independent Components Analysis is a Blind Source Separation method that aims to find the pure source signals mixed together in unknown proportions in the observed signals under study. It does this by searching for factors which are mutually statistically independent. It can thus be classified among the latent-variable based methods. Like other methods based on latent variables, a careful investigation has to be carried out to find out which factors are significant and which are not. Therefore, it is important to dispose of a validation procedure to decide on the optimal number of independent components to include in the final model. This can be made complicated by the fact that two consecutive models may differ in the order and signs of similarly-indexed ICs. As well, the structure of the extracted sources can change as a function of the number of factors calculated. Two methods for determining the optimal number of ICs are proposed in this article and applied to simulated and real datasets to demonstrate their performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, Independent Components Analysis (ICA) has proven itself to be a powerful signal-processing technique for solving the Blind-Source Separation (BSS) problems in different scientific domains. In the present work, an application of ICA for processing NIR hyperspectral images to detect traces of peanut in wheat flour is presented. Processing was performed without a priori knowledge of the chemical composition of the two food materials. The aim was to extract the source signals of the different chemical components from the initial data set and to use them in order to determine the distribution of peanut traces in the hyperspectral images. To determine the optimal number of independent component to be extracted, the Random ICA by blocks method was used. This method is based on the repeated calculation of several models using an increasing number of independent components after randomly segmenting the matrix data into two blocks and then calculating the correlations between the signals extracted from the two blocks. The extracted ICA signals were interpreted and their ability to classify peanut and wheat flour was studied. Finally, all the extracted ICs were used to construct a single synthetic signal that could be used directly with the hyperspectral images to enhance the contrast between the peanut and the wheat flours in a real multi-use industrial environment. Furthermore, feature extraction methods (connected components labelling algorithm followed by flood fill method to extract object contours) were applied in order to target the spatial location of the presence of peanut traces. A good visualization of the distributions of peanut traces was thus obtained

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High flux and high CRI may be achieved by combining different chips and/or phosphors. This, however, results in inhomogeneous sources that, when combined with collimating optics, typically produce patterns with undesired artifacts. These may be a combination of spatial, angular or color non-uniformities. In order to avoid these effects, there is a need to mix the light source, both spatially and angularly. Diffusers can achieve this effect, but they also increase the etendue (and reduce the brightness) of the resulting source, leading to optical systems of increased size and wider emission angles. The shell mixer is an optic comprised of many lenses on a shell covering the source. These lenses perform Kohler integration to mix the emitted light, both spatially and angularly. Placing it on top of a multi-chip Lambertian light source, the result is a highly homogeneous virtual source (i.e, spatially and angularly mixed), also Lambertian, which is located in the same position with essentially the same size (so the average brightness is not increased). This virtual light source can then be collimated using another optic, resulting in a homogeneous pattern without color separation. Experimental measurements have shown optical efficiency of the shell of 94%, and highly homogeneous angular intensity distribution of collimated beams, in good agreement with the ray-tracing simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to obtain more human like sounding humanmachine interfaces we must first be able to give them expressive capabilities in the way of emotional and stylistic features so as to closely adequate them to the intended task. If we want to replicate those features it is not enough to merely replicate the prosodic information of fundamental frequency and speaking rhythm. The proposed additional layer is the modification of the glottal model, for which we make use of the GlottHMM parameters. This paper analyzes the viability of such an approach by verifying that the expressive nuances are captured by the aforementioned features, obtaining 95% recognition rates on styled speaking and 82% on emotional speech. Then we evaluate the effect of speaker bias and recording environment on the source modeling in order to quantify possible problems when analyzing multi-speaker databases. Finally we propose a speaking styles separation for Spanish based on prosodic features and check its perceptual significance.