14 resultados para biosensing

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solidly mounted resonators (SMRs) with a top carbon nanotubes (CNTs) surface coating that doubles as an electrode and as a sensing layer have been fabricated. The influence of the CNTs on the frequency response of the resonators was studied by direct comparison to identical devices with a top metallic electrode. It was found that the CNTs introduced significantly less mass load on the resonators and these devices exhibited a greater quality factor, Q (>2000, compared to ∼1000 for devices with metal electrodes), which increases the gravimetric sensitivity of the devices by allowing the tracking of smaller frequency shifts. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode exhibited a higher frequency change for a given load (∼0.25 MHz cm2 ng−1) compared to that of a metal thin film electrode (∼0.14 MHz cm2 ng−1), due to the lower mass of the CNTelectrodes and their higher active surface area compared to that of a thin film metal electrode. It is therefore concluded that the use of CNTelectrodes on resonators for their use as gravimetric biosensors is a significant improvement over metallic electrodes that are normally employed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work reported here shows a direct experimental comparison of the sensitivities of AlN solidly mounted resonators (SMR)-based biosensors fabricated with standard metal electrodes and with carbon nanotube electrodes. SMRs resonating at frequencies around 1.75 GHz have been fabricated, some devices using a thin film of multi-wall carbon nanotubes (CNTs) as the top electrode material and some identical devices using a chromium/gold electrode. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode material exhibited higher frequency change for a given load due to the higher active surface area of a thin film of interconnecting CNTs compared to that of a metal thin film electrode and hence exhibited greater mass loading sensitivity. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is viable and worthwhile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous works we demonstrated the benefits of using micro–nano patterning materials to be used as bio-photonic sensing cells (BICELLs), referred as micro–nano photonic structures having immobilized bioreceptors on its surface with the capability of recognizing the molecular binding by optical transduction. Gestrinone/anti-gestrinone and BSA/anti-BSA pairs were proven under different optical configurations to experimentally validate the biosensing capability of these bio-sensitive photonic architectures. Moreover, Three-Dimensional Finite Difference Time Domain (FDTD) models were employed for simulating the optical response of these structures. For this article, we have developed an effective analytical simulation methodology capable of simulating complex biophotonic sensing architectures. This simulation method has been tested and compared with previous experimental results and FDTD models. Moreover, this effective simulation methodology can be used for efficiently design and optimize any structure as BICELL. In particular for this article, six different BICELL's types have been optimized. To carry out this optimization we have considered three figures of merit: optical sensitivity, Q-factor and signal amplitude. The final objective of this paper is not only validating a suitable and efficient optical simulation methodology but also demonstrating the capability of this method for analyzing the performance of a given number of BICELLs for label-free biosensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Label free immunoassay sector is a ferment of activity, experiencing rapid growth as new technologies come forward and achieve acceptance. The landscape is changing in a “bottom up” approach, as individual companies promote individual technologies and find a market for them. Therefore, each of the companies operating in the label-free immunoassay sector offers a technology that is in some way unique and proprietary. However, no many technologies based on Label-free technology are currently in the market for PoC and High Throughput Screening (HTS), where mature labeled technologies have taken the market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los sectores de detección biológica demandan continuamente técnicas de análisis y diagnóstico más eficientes y precisas para identificar enfermedades y desarrollar nuevos medicamentos. Actualmente se considera que hay una gran necesidad de desarrollar herramientas de diagnóstico capaces de asegurar sensibilidad, rapidez, sencillez y asequibilidad para aplicaciones en sectores como la salud, la alimentación, el medioambiente o la seguridad. En el ámbito clínico se necesitan profundos avances tecnológicos capaces de ofrecer análisis rápidos, exactos, fiables y asequibles en coste y que tengan como consecuencia la mejora clínica y económica a partir de un diagnóstico eficiente. En concreto, hay un interés creciente por la descentralización del diagnóstico clínico mediante plataformas de detección cercanas al usuario final, denominadas POCs (Point Of Care devices). La utilización de POCs (referidas al diagnóstico cercano al usuario final o fuera del laboratorio de análisis clínico), mediante detección in vitro (IVD), será extremadamente útil en centros de salud, clínicas o unidades hospitalarias, entornos laborales o incluso en el hogar. Por otra parte, el desarrollo de la genómica, proteómica y otras tecnologías conocidas como “omics” (sufijo en inglés para referirse, por ejemplo, a genomics, transcriptomics, proteomics, metabolomics, lipidomics) está incrementando la demanda de nuevas tecnologías mucho más avanzadas con una clara orientación hacia la medicina personalizada y la necesidad de hacer frente a cambios en los tratamientos en el caso de enfermedades complejas. Desde hace poco tiempo se han definido las Celdas Biofónicas (BICELLs) como una metodología novedosa para la detección de agentes biológicos que ofrecen una serie de características que las hacen interesantes como son: Capacidad de multiplexación, alta sensibilidad, posibilidad de medir en gota, compatible con otras tecnologías. En este trabajo se hace un estudio y optimización sobre diferentes tipos de BICELLs y se valoran una serie de figuras de merito a tener en cuenta desde el punto de vista del lector óptico a emplear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of Biophotonic Sensing Cells (BICELLs) based on micro-nano pattemed photonic architectures has been recently proven as an efficient methodology for label-free biosensing by using Optical Interrogation [1]. According to this, we have studied the different optical response for a specific typology of BICELL, consisting of structures of SU -8. This material is biocompatible with different types of biomolecules and can be immobilized on its sensing surface. In particular, we have measured the optical response for a biomarker in clinic diagnostic of dry eye. Although different proteins can be enstudied such as: PRDX5, ANXA 1, ANXA 11, CST 4, PLAA Y S 1 OOA6 related with ocular surface (dry eye), for this work PLAA (phospholipase A2) is studied by means of label free biosensing based on BICELLs for analyzing the performance and specificity according with means values of concentration in ROC curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work of the research group [1-4] demonstrated the viability of using periodic lattices of micro and nanopillars, called Bio-photonic sensing Cells (BICELLs), as an optical biosensor vertically characterized by visible spectrometry. Also we have studied theoretically [5] the performance of the BICELLs by 2D and 3D simulation in orde r to optimize the biosensing response. In this work we present the fabrication and biosensing comparison of different geometrical parameters on periodic lattices of pillars in order to discuss theoretical conclusions with these results. In this way, we have explored the biosensing response of other patter ns such as crosses, stars, cylinders, concentrical cylinders (Figure 1). Also we introduced a novel method to test the BICELLs in a cost-effective way by using an ultra-thin film of SU-8 spin-coated onto the patterns to reproduce the effect of a biofilm attached to the biosensor surface. Finally we have tested the biosensing response of the different geometries by the well-known Bovine Serum Albumin (BSA) immunoassay and compared with the theoretical simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the fabrication of silicon dioxide (SiO2) coated silicon nanopillar array structures and demonstrate their application as sensitive optical biosensors. Colloidal lithography, plasma dry etching and deposition processes are used to fabricate SiO2 coated Si nanopillar arrays with two different diameters and periods. Proof of concept bio recognition experiments are carried out with the bovine serum albumin (BSA)/antiBSA model system using Fourier transform visible and IR spectrometry (FT-VIS-IR) in reflection mode. A limit of detection (LoD) value of 5.2 ng/ml is estimated taking in to account the wavenumber uncertainty in the measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, label-free biosensing for antibody screening by periodic lattices of high-aspect ratio SU-8 nano-pillars (BICELLs) is presented. As a demonstration, the determination of anti-gestrinone antibodies from whole rabbit serum is carried out, and for the first time, the dissociation constant (KD = 6 nM) of antigen-antibody recognition process is calculated using this sensing system. After gestrinone antigen immobilization on the BICELLs, the immunorecognition was performed. The cells were interrogated vertically by using micron spot size Fourier transform visible and IR spectrometry (FT-VIS-IR), and the dip wavenumber shift was monitored. The biosensing assay exhibited good reproducibility and sensitivity (LOD = 0.75 ng/mL).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The negative epoxy-based SU-8 photoresist has a wide variety of applications within the semiconductor industry, photonics and lab-on-a-chip devices, and it is emerging as an alternative to silicon-based devices for sensing purposes. In the present work, biotinylation of the SU-8 polymer surface promoted by light is reported. As a result, a novel, efective, and low-cost material, focusing on the immobilization of bioreceptors and consequent biosensing, is developed. This material allows the spatial discrimination depending on the irradiation of desired areas. The most salient feature is that the photobiotin may be directly incorporated into the SU-8 curing process, consequently reducing time and cost. The potential use of this substrate is demonstrated by the immunoanalytical detection of the synthetic steroid gestrinone, showing excellent performances. Moreover, the naked eye biodetection due to the transparent SU-8 substrate, and simple instrumental quantication are additional advantages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El gran crecimiento de los sistemas MEMS (Micro Electro Mechanical Systems) así como su presencia en la mayoría de los dispositivos que usamos diariamente despertó nuestro interés. Paralelamente, la tecnología CMOS (Complementary Metal Oxide Semiconductor) es la tecnología más utilizada para la fabricación de circuitos integrados. Además de ventajas relacionadas con el funcionamiento electrónico del dispositivo final, la integración de sistemas MEMS en la tecnología CMOS reduce significantemente los costes de fabricación. Algunos de los dispositivos MEMS con mayor variedad de aplicaciones son los microflejes. Estos dispositivos pueden ser utilizados para la extracción de energía, en microscopios de fuerza atómica o en sensores, como por ejemplo, para biodetección. Los materiales piezoeléctricos más comúnmente utilizados en aplicaciones MEMS se sintetizan a altas temperaturas y por lo tanto no son compatibles con la tecnología CMOS. En nuestro caso hemos usado nitruro de alumino (AlN), que se deposita a temperatura ambiente y es compatible con la tecnología CMOS. Además, es biocompatible, y por tanto podría formar parte de un dispositivo que actúe como biosensor. A lo largo de esta tesis hemos prestado especial atención en desarrollar un proceso de fabricación rápido, reproducible y de bajo coste. Para ello, todos los pasos de fabricación han sido minuciosamente optimizados. Los parámetros de sputtering para depositar el AlN, las distintas técnicas y recetas de ataque, los materiales que actúan como electrodos o las capas sacrificiales para liberar los flejes son algunos de los factores clave estudiados en este trabajo. Una vez que la fabricación de los microflejes de AlN ha sido optimizada, fueron medidos para caracterizar sus propiedades piezoeléctricas y finalmente verificar positivamente su viabilidad como dispositivos piezoeléctricos. ABSTRACT The huge growth of MEMS (Micro Electro Mechanical Systems) as well as their presence in most of our daily used devices aroused our interest on them. At the same time, CMOS (Complementary Metal Oxide Semiconductor) technology is the most popular technology for integrated circuits. In addition to advantages related with the electronics operation of the final device, the integration of MEMS with CMOS technology reduces the manufacturing costs significantly. Some of the MEMS devices with a wider variety of applications are the microcantilevers. These devices can be used for energy harvesting, in an atomic force microscopes or as sensors, as for example, for biodetection. Most of the piezoelectric materials used for these MEMS applications are synthesized at high temperature and consequently are not compatible with CMOS technology. In our case we have used aluminum nitride (AlN), which is deposited at room temperature and hence fully compatible with CMOS technology. Otherwise, it is biocompatible and and can be used to compose a biosensing device. During this thesis work we have specially focused our attention in developing a high throughput, reproducible and low cost fabrication process. All the manufacturing process steps of have been thoroughly optimized in order to achieve this goal. Sputtering parameters to synthesize AlN, different techniques and etching recipes, electrode material and sacrificial layers are some of the key factors studied in this work to develop the manufacturing process. Once the AlN microcantilevers fabrication was optimized, they were measured to characterize their piezoelectric properties and to successfully check their viability as piezoelectric devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo de esta tesis es el desarrollo y caracterización de biosensores ópticos sin marcado basados en celdas sensoras biofotónicas (BICELLs). Éstas son un nuevo concepto de biosensor desarrollado por el grupo de investigación y consiste en la combinación de técnicas de interrogación vertical, junto a estructuras fotónicas producidas usando métodos de micro- y nanofabricación. Varias conclusiones son extraídas de este trabajo. La primera, que se ha definido una BICELL estándar basada en interferómetros Fabry-Perot (FP). Se ha demostrado su capacidad para la comparación de rendimiento entre BICELLs estructuradas y para la realización de inmunoensayos de bajo coste. Se han estudiado diferentes técnicas de fabricación disponibles para la producción de BICELLs. Se determinó que la litografía de contacto a nivel de oblea produce estructuras de bajo coste, reproducibles y de alta calidad. La resolución alcanzada ha sido de 700 nm. El estudio de la respuesta a inmunoensayos de las BICELLs producidas se ha desarrollado en este trabajo. Se estudió la influencia de BICELLs basadas en diferentes geometrías y tamaños. De aquí resulta un nuevo enfoque para predecir el comportamiento de respuesta para la detección biológica de cualquier biosensor óptico estructurado, relacionando su superficie efectiva y su sensibilidad óptica. También se demostró una técnica novedosa y de bajo coste para la caracterización experimental de la sensibilidad óptica, basada en el depósito de películas ultradelgadas. Finalmente, se ha demostrado el uso de BICELLs desarrolladas en esta tesis, en la detección de aplicaciones reales, tales como hormonas, virus y proteínas. ABSTRACT The objective of this thesis is the development and characterization of optical label-free biosensors based on Bio-Photonic sensing Cells (BICELLs). BICELL is a novel biosensor concept developed by the research group, and it consists of a combination of vertical interrogation optical techniques and photonic structures produced by using micro- and nano-fabrication methods. Several main conclusions are extracted from this work. Firstly, a standard BICELL is defined based on FP interferometers, which demonstrated its capacity for accomplishing performance comparisons among different structured BICELLs, as well as to achieve low-cost immunoassays. Different available fabrication techniques were studied for BICELL manufacturing. It is found that contact lithography at wafer scale produce cost-effective, reproducible and high quality structures. The resolution achieved was 700 nm. Study on the response of developed BICELLs to immunoassays is performed within this work. It is therefore studied the influence of BICELLs based on different geometries and sizes in the immunoassay, which resulted in a new approach to predict the biosensing behaviour of any structured optical biosensor relating to its effective surface and optical sensitivity. Also, it is demonstrated a novel and low-cost characterization technique of the experimental optical sensitivity, based on ultrathin-film deposition. Finally, it is also demonstrated the capability of using the developed BICELLs in this thesis for real applications detection of hormones, virus and proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El diagnóstico y detección temprana de enfermedades son clave para reducir la tasa de mortalidad, las hospitalizaciones de larga duración y el desaprovechamiento de recursos. En los últimos años se ha impulsado, mediante un aumento de la financiación, el desarrollo de nuevos biosensores de bajo coste capaces de detectar y cuantificar cantidades muy pequeñas de especies biológicas de una forma barata y sencilla. El trabajo presentado en esta Tesis Doctoral describe la investigación llevada a cabo en el desarrollo de sensores gravimétricos basados en resonadores de ondas acústicas de volumen (BAW) de estructura maciza (SMR). Los dispositivos emplean películas delgadas de A1N como material piezoeléctrico y operan en modo de cizalladura, para así poder detectar especies biológicas en medio líquido. El principio de funcionamiento de estos sensores se basa en la variación que experimenta la frecuencia de resonancia al quedar una pequeña masa adherida a su superficie. Necesitan operar en modo de cizalladura para que su resonancia no se atenúe al trabajar en medio líquido, así como ofrecer una superficie capaz de ser funcionalizada específicamente para la especie biológica a detectar. El reto planteado en esta tesis requiere un acercamiento pluridisciplinar al problema que incluye el estudio de los diferentes materiales que constituyen la estructura multicapa que forma un SMR, el diseño y fabricación del dispositivo y del sistema de fluídica, la funcionalización bioquímica de la superficie del sensor, la demostración de la capacidad de detección de especies biológicas y finalmente el diseño y fabricación de la electrónica asociada para la detección de la señal eléctrica. Todas esas tareas han sido abordadas en las distintas etapas del desarrollo de esta tesis y las contribuciones más relevantes se describen en el documento. En el campo de desarrollo de los materiales, se propone un proceso en dos etapas para la pulverización reactiva de capas de A1N que contengan microcristales inclinados capaces de excitar el modo de cizalladura. Se caracteriza la velocidad acústica del modo de cizalladura en todos los materiales que componen la estructura, con el fin de poder obtener un diseño más adecuado del reflector acústico. Se propone un nuevo tipo de material aislante de alta impedancia acústica consistente en capas de W03 pulverizadas que presenta ciertas ventajas tecnológicas frente a las capas convencionales de Ta205. Respecto del diseño del transductor, se estudia la influencia que tienen los con tactos eléctricos extendidos del resonador necesarios para poder adaptar el sistema de fluídica a la estructura. Los resultados indican que es necesario trabajar sobre sustratos aislantes (tanto el soporte como el espejo acústico) para evitar efectos parásitos asociados al uso de capas metálicas bajo los electrodos del resonador que dañan su resonancia. Se analiza la influencia de las diferentes capas del dispositivo en el coeficiente de temperatura de la frecuencia (TCF) del resonador llegando a la conclusión de que las dos últimas capas del reflector acústico afectan significativamente al TCF del SMR, pudiendo reducirse ajusfando adecuadamente sus espesores. De acuerdo con los resultados de estos estudios, se han diseñado finalmente resonadores SMR operando a f .3 GHz en modo de cizalladura, con un área activa de 65000 /xm2, contactos eléctricos que se extienden f .7 mm y factores de calidad en líquido de f 50. Las extensiones eléctricas permiten adaptar el resonador a un sistema de fluídica de metacrilato. Para la detección de especies biológicas se realiza un montaje experimental que permite circular 800 ¡A por la superficie del sensor a través de un circuito cerrado que trabaja a volumen constante. La circulación de soluciones iónicas sobre el sensor descubierto pone de manifiesto que las altas frecuencias de operación previenen los cortocircuitos y por tanto el aislamiento de los electrodos es prescindible. Se desarrolla un protocolo ad-hoc de funcionalización basado en el proceso estándar APTESGlutaraldehído. Se proponen dos alternativas novedosas para la funcionalización de las áreas activas del sensor basadas en el uso de capas de oxidación de Ir02 y su activación a través de un plasma de oxígeno que no daña al dispositivo. Ambos procesos contribuyen a simplificar notablemente la funcionalización de los sensores gravimétricos. Se utilizan anticuerpos y aptámeros como receptores para detectar trombina, anticuerpo monoclonal IgG de ratón y bacteria sonicadas. Una calibración preliminar del sensor con depósitos de capas finas de Si02 de densidad y espesor conocidos permite obtener una sensibilidad de 1800 kHz/pg-cm2 y un límite de detección of 4.2 pg. Finalmente se propone el prototipo de un circuito electrónico de excitación y lectura de bajo coste diseñado empleando teoría de circuitos de microondas. Aunque su diseño y funcionamiento admite mejoras, constituye la última etapa de un sistema completo de bajo coste para el diagnóstico de especies biológicas basado en resonadores SMR de A1N. ABSTRACT Early diagnosis and detection of diseases are essential for reducing mortality rate and preventing long-term hospitalization and waste of resources. These requirements have boosted the efforts and funding on the research of accurate and reliable means for detection and quantification of biological species, also known as biosensors. The work presented in this thesis describes the development and fabrication of gravimetric biosensors based on piezoelectric AlN bulk acoustic wave (BAW) solidly mounted resonators (SMRs) for detection of biological species in liquid media. These type of devices base their sensing principles in the variation that their resonant frequency suffers when a mass is attached to their surface. They need to operate in the shear mode to maintain a strong resonance in liquid and an adequate functionalisation of their sensing area to guarantee that only the targeted molecules cause the shift. The challenges that need to be overcome to achieve piezoelectric BAW resonators for high sensitivity detection in fluids require a multidisciplinary approach, that include the study of the materials involved, the design of the device and the fluidic system, the biochemical functionalisation of the active area, the experimental proof-of-concept with different target species and the design of an electronic readout circuit. All this tasks have been tackled at different stages of the thesis and the relevant contributions are described in the document. In the field of materials, a two-stage sputtering deposition process has been developed to obtain good-quality AlN films with uniformly tilted grains required to excite the shear mode. The shear acoustic velocities of the materials composing the acoustic reflector have been accurately studied to ensure an optimum design of the reflector stack. WO3 sputtered films have been proposed as high acoustic impedance material for insulating acoustic reflectors. They display several technological advantages for the processing of the resonators. Regarding the design, a study of the influence of the electrical extensions necessary to fit a fluidic system on the performance of the devices has been performed. The results indicate that high resistivity substrates and insulating reflectors are necessary to avoid the hindering of the resonance due to the parasitic effects induced by the extensions. The influence of the different layers of the stack on the resultant TCF of the SMRs has also been investigated. The two layers of the reflector closer to the piezoelectric layer have a significant influence on the TCF, which can be reduced by modifying their thicknesses accordingly. The data provided by these studies has led to the final design of the devices, which operate at 1.3 GHz in the shear mode and display an active area of 65000 /xm2 and electrical extensions of 1.7 mm while keeping a Qahear=150 in liquid. The extensions enable to fit a custom-made fluidic system made of methacrylate. To perform the biosensing experiments, an experimental setup with a liquid closed circuit operating at constant flow has been developed. Buffers of ionic characteristics have been tested on non-isolated devices, revealing that high operation frequencies prevent the risk of short circuit. An ad-hoc functionalisation protocol based on the standard APTES - Glutaraldehyde process has been developed. It includes two new processes that simplify the fabrication of the transducers: the use of IrO2 as oxidation layer and its functionalisation through an O2 plasma treatment that does not damage the resonators. Both antibodies and aptamers are used as receptors. In liquid sensing proof-of-concept experiments with thrombin, IgG mouse monoclonal antibody and sonicated bacteria have been displayed. A preliminary calibration of the devices using SiO2 layers reveals a sensitivity of 1800 kHz/pg-cm2 and a limit of detection of 4.2 pg. Finally, a first prototype of a low-cost electronic readout circuit designed using a standard microwave approach has been developed. Although its performance can be significantly improved, it is an effective first approach to the final stage of a portable low-cost diagnostic system based on shear mode AlN SMRs.