2 resultados para batteries rocking chair prussian blue cyclic voltammetry electrochemistry XAS

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Platinum is the most used catalyst in electrodes for fuel cells due to its high catalytic activity. Polymer electrolyte and direct methanol fuel cells usually include Pt as catalyst in their electrodes. In order to diminish the cost of such electrodes, different Pt deposition methods that permit lowering the metal load whilst maintaining their electroactivity, are being investigated. In this work, the behaviour of electron beam Pt (e-beam Pt) deposited electrodes for fuel cells is studied. Three different Pt loadings have been investigated. The electrochemical behaviour by cyclic voltammetry in H2SO4, HClO4 and in HClO4+MeOH before and after the Pt deposition on carbon cloth has been analysed. The Pt improves the electrochemical properties of the carbon support used. The electrochemical performance of e-beam Pt deposited electrodes was finally studied in a single direct methanol fuel cell (DMFC) and the obtained results indicate that this is a promising and adequate method to prepare fuel cell electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bismuth ultra-thin films grown on n-GaAs electrodes via electrodeposition are porous due to a blockade of the electrode surface caused by adsorbed hydrogen when using acidic electrolytes. In this study, we discuss the existence of two sources of hydrogen adsorption and we propose different routes to unblock the n-GaAs surface in order to improve Bi films compactness. Firstly, we demonstrate that increasing the electrolyte temperature provides compact yet polycrystalline Bi films. Cyclic voltammetry scans indicate that this low crystal quality might be a result of the incorporation of Bi hydroxides within the Bi film as a result of the temperature increase. Secondly, we have illuminated the semiconductor surface to take advantage of photogenerated holes. These photocarriers oxidize the adsorbed hydrogen unblocking the surface, but also create pits at the substrate surface that degrade the Bi/GaAs interface and prevent an epitaxial growth. Finally, we show that performing a cyclic voltammetry scan before electrodeposition enables the growth of compact Bi ultra-thin films of high crystallinity on semiconductor substrates with a doping level low enough to perform transport measurements.