4 resultados para bacterial growth

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protease inhibitors from plants have been involved in defence mechanisms against pests and pathogens. Phytocystatins and trypsin/α-amylase inhibitors are two of the best characterized protease inhibitor families in plants. In barley, thirteen cystatins (HvCPI-1 to 13) and the BTI-CMe trypsin inhibitor have been previously studied. Their capacity to inhibit pest digestive proteases, and the negative in vivo effect caused by plants expressing these inhibitors on pests support the defence function of these proteins. Barley cystatins are also able to inhibit in vitro fungal growth. However, the antifungal effect of these inhibitors in vivo had not been previously tested. Moreover, their in vitro and in vivo effect on plant pathogenous bacteria is still unknown. In order to obtain new insights on this feature, in vitro assays were made against different bacterial and fungal pathogens of plants using the trypsin inhibitor BTI-CMe and the thirteen barley cystatins. Most barley cystatins and the BTI-CMe inhibitor were able to inhibit mycelial growth but no bacterial growth. Transgenic Arabidopsis plants independently expressing the BTI-CMe inhibitor and the cystatin HvCPI-6 were tested against the same bacterial and fungal pathogens. Neither the HvCPI-6 expressing transgenic plants nor the BTI-CMe ones were more resistant to plant pathogen fungi and bacteria than control Arabidopsis plants. The differences observed between the in vitro and in planta assays against phytopathogenic fungi are discussed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los conjuntos bacterianos son sistemas dinámicos difíciles de modelar debido a que las bacterias colaboran e intercambian información entre sí. Estos microorganismos procariotas pueden tomar decisiones por mayoría e intercambiar información genética importante que, por ejemplo, las haga resistentes a un antibiótico. El proceso de conjugación consiste en el intercambio de un plásmido de una bacteria con otra, permitiendo así que se transfieran propiedades. Estudios recientes han demostrado que estos plásmidos pueden ser reprogramados artificialmente para que la bacteria que lo contenga realice una función específica [1]. Entre la multitud de aplicaciones que supone esta idea, el proyecto europeo PLASWIRES está intentando demostrar que es posible usar organismos vivos como computadores distribuidos en paralelo y plásmidos como conexión entre ellos mediante conjugación. Por tanto, mediante una correcta programación de un plásmido, se puede conseguir, por ejemplo, hacer que una colonia de bacterias haga la función de un antibiótico o detecte otros plásmidos peligrosos en bacterias virulentas. El proceso experimental para demostrar esta idea puede llegar a ser algo lento y tedioso, por lo que es necesario el uso de simuladores que predigan su comportamiento. Debido a que el proyecto PLASWIRES se basa en la conjugación bacteriana, surge la necesidad de un simulador que reproduzca esta operación. El presente trabajo surge debido a la deficiencia del simulador GRO para reproducir la conjugación. En este documento se detallan las modificaciones necesarias para que GRO pueda representar este proceso, así como analizar los datos obtenidos e intentar ajustar el modelo a los datos obtenidos por el Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC). ---ABSTRACT---Bacterial colonies are dynamical systems difficult to model because bacteria collaborate and exchange information with each other. These prokaryotic organisms can make decisions by majority and exchange important genetic information, for example, make them resistant to an antibiotic. The conjugation process is the exchange of a plasmid from one bacterium to another, allowing both to have the same properties. Recent studies have shown that these plasmids can be artificially reprogrammed to make the bacteria that contain it to perform a specific function [1]. Among the multitude of applications involved in this idea, the European project PLASWIRES is attempting to prove that it is possible to use living organisms as parallel and distributed computers with plasmids acting as connectors between them through conjugation. Thus, by properly programming a plasmid, you can get a colony of bacteria that work as an antibiotic or detect hazardous plasmids in virulent bacteria. The experimental process to prove this idea can be slow and tedious, so the use of simulators to predict their behavior is required. Since PLASWIRES project is based on bacterial conjugation, a simulator that can reproduce this operation is required. This work arises due to the absence of the conjugation process in the simulator GRO. This document details the changes made to GRO to represent this process, analyze the data and try to adjust the model to the data obtained by the Institute of Biomedicine and Biotechnology of Cantabria ( IBBTEC ). This project has two main objectives, the first is to add the functionality of intercellular communication by conjugation to the simulator GRO, and the second is to use the experimental data obtained by the IBBTEC. To do this, the following points should be followed: • Study of conjugation biology as a mechanism of intercellular communication. • Design and implementation of the algorithm that simulates conjugation. • Experimental validation and model adjust to the experimental data on rates of conjugation and bacterial growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hace no más de una década que empezó a escucharse el término biología sintética. Este área de estudio emergente consiste en la ingeniería y programación de sistemas biológicos, tratando la biología como una tecnología programable a la que aplican los principios y metodologías de la ingeniería, con el fin de crear nuevas funcionalidades genéticas desde cero, procurando asÍ algún beneficio como por ejemplo, programar células bacterianas para producir biocombustibles. Sin embargo, para la creación de dichas funcionalidades es necesario conocer bien al organismo sobre el que se van a implantar. Por este motivo, los biólogos sintéticos emplean bacterias en sus estudios, ya que es la forma de vida más simple, está presente en prácticamente todos los nichos ecológicos, desempeña algunas de las funcionalidades vitales para los humanos y lo mas importante, se conoce prácticamente todo su material genético. Los experimentos son costosos en tiempo y dinero, siendo necesaria la ayuda de herramientas que faciliten esta labor, los simuladores. En PLASWIRES, proyecto europeo de biología sintética en el que se engloba este este trabajo, el simulador empleado es GRO. Sin embargo, en GRO el crecimiento de las bacterias ocurre de forma exponencial y sin restricciones, generando comportamientos poco realistas. Por ello, se ha considerado relevante en biología sintética, y en el simulador GRO en particular, disponer de un modelo de crecimiento bacteriano dependiente de los nutrientes. El desarrollo de este trabajo se centra en la implementación de un módulo de consumo de nutrientes en colonias de bacterias simuladas con GRO, introduciendo así la limitación de nutrientes y evitanto que las bacterias crezcan exponencialmente. Se han introducido nutrientes en el medio y la capacidad de consumirlos, con el objetivo de obtener un crecimiento ajustado al que ocurre en la naturaleza. Además, se ha desarrollado en GRO una nueva función de adquisición de volumen, que condiciona el volumen adquirido por cada bacteria en función de los nutrientes. La implentación de las dos aportaciones presentadas ha supuesto la adición de funcionalidad extra a GRO, convirtiéndolo en el único simulador de bacterias que tiene en cuenta el crecimiento bacteriano dependiente de nutrientes.---ABSTRACT---It has been in this last decade that the synthetic biology term began to be heard. This emergent area of study consists in the engineering and programming of biological systems, dealing with biology as a programable technology in which the engineering principles and methodologies are applied in order to create novel genetic functinalities from scratch, obtaining some advatages such as programmed bacteria in order to produce biofuels. However, to create this functionalities, it is necessary to know well the organisms in which they are going to be implemented. For this reason, synthetic biology researchers use bacteria, because it is the simplest life form, it can be found in almost all the ecological niche, it does some vital function to humans and, most important, almost all of its genetic information is known. Experiments are expensive in time and money, making it necessary to use tools to ease this task: the simulators. In PLASWIRES, the european synthetic biology project in which this work is included, the simulator used is GRO. However, the bacterial growth in GRO is exponential and it does not have restrictions, generating unrealistic behaviours. Therefore, it has been considered relevant in synthetic biology, and in a particular way in GRO, to provide a bacterial growth model dependent on nutrient. This work focuses on the implementation of a nutrient consumption module in bacteria colonies simulated with GRO, introducing a nuntrient limitation and avoiding the bacteria exponential growth. The module introduces nutrients and the capacity for bacteria to consume them, aiming to obtain realistic growth simulations that fit the observations made in nature. Moreover, an adquisition volumen function has been developed in GRO, determining the volumen depending on nutrients. This two contributions make GRO the only bacteria simulator that computes growth depending on nutrients

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acylamidohydrolases from higher plants have not been characterized or cloned so far. AtAMI1 is the first member of this enzyme family from a higher plant and was identified in the genome of Arabidopsis thaliana based on sequence homology with the catalytic-domain sequence of bacterial acylamidohydrolases, particularly those that exhibit indole-3-acetamide amidohydrolase activity. AtAMI1 polypeptide and mRNA are present in leaf tissues, as shown by immunoblotting and RT-PCR, respectively. AtAMI1 was expressed from its cDNA in enzymatically active form and exhibits substrate specificity for indole-3-acetamide, but also some activity against l-asparagine. The recombinant enzyme was characterized further. The results show that higher plants have acylamidohydrolases with properties similar to the enzymes of certain plant-associated bacteria such as Agrobacterium-, Pseudomonas- and Rhodococcus-species, in which these enzymes serve to synthesize the plant growth hormone, indole-3-acetic acid, utilized by the bacteria to colonize their host plants. As indole-3-acetamide is a native metabolite in Arabidopsis thaliana, it can no longer be ruled out that one pathway for the biosynthesis of indole-3-acetic acid involves indole-3-acetamide-hydrolysis by AtAMI1.