12 resultados para augmented Lagrangian methods
em Universidad Politécnica de Madrid
Resumo:
Wireless sensor networks are posed as the new communication paradigm where the use of small, low-complexity, and low-power devices is preferred over costly centralized systems. The spectra of potential applications of sensor networks is very wide, ranging from monitoring, surveillance, and localization, among others. Localization is a key application in sensor networks and the use of simple, efficient, and distributed algorithms is of paramount practical importance. Combining convex optimization tools with consensus algorithms we propose a distributed localization algorithm for scenarios where received signal strength indicator readings are used. We approach the localization problem by formulating an alternative problem that uses distance estimates locally computed at each node. The formulated problem is solved by a relaxed version using semidefinite relaxation technique. Conditions under which the relaxed problem yields to the same solution as the original problem are given and a distributed consensusbased implementation of the algorithm is proposed based on an augmented Lagrangian approach and primaldual decomposition methods. Although suboptimal, the proposed approach is very suitable for its implementation in real sensor networks, i.e., it is scalable, robust against node failures and requires only local communication among neighboring nodes. Simulation results show that running an additional local search around the found solution can yield performance close to the maximum likelihood estimate.
Resumo:
We present a quasi-monotone semi-Lagrangian particle level set (QMSL-PLS) method for moving interfaces. The QMSL method is a blend of first order monotone and second order semi-Lagrangian methods. The QMSL-PLS method is easy to implement, efficient, and well adapted for unstructured, either simplicial or hexahedral, meshes. We prove that it is unconditionally stable in the maximum discrete norm, � · �h,∞, and the error analysis shows that when the level set solution u(t) is in the Sobolev space Wr+1,∞(D), r ≥ 0, the convergence in the maximum norm is of the form (KT/Δt)min(1,Δt � v �h,∞ /h)((1 − α)hp + hq), p = min(2, r + 1), and q = min(3, r + 1),where v is a velocity. This means that at high CFL numbers, that is, when Δt > h, the error is O( (1−α)hp+hq) Δt ), whereas at CFL numbers less than 1, the error is O((1 − α)hp−1 + hq−1)). We have tested our method with satisfactory results in benchmark problems such as the Zalesak’s slotted disk, the single vortex flow, and the rising bubble.
Resumo:
Esta tesis está enmarcada en el estudio de diferentes procedimientos numéricos para resolver la dinámica de un sistema multicuerpo sometido a restricciones e impacto, que puede estar compuesto por sólidos rígidos y deformables conectados entre sí por diversos tipos de uniones. Dentro de los métodos numéricos analizados se presta un especial interés a los métodos consistentes, los cuales tienen por objetivo que la energía calculada en cada paso de tiempo, para un sistema mecánico, tenga una evolución coherente con el comportamiento teórico de la energía. En otras palabras, un método consistente mantiene constante la energía total en un problema conservativo, y en presencia de fuerzas disipativas proporciona un decremento positivo de la energía total. En esta línea se desarrolla un algoritmo numérico consistente con la energía total para resolver las ecuaciones de la dinámica de un sistema multicuerpo. Como parte de este algoritmo se formulan energéticamente consistentes las restricciones y el contacto empleando multiplicadores de Lagrange, penalización y Lagrange aumentado. Se propone también un método para el contacto con sólidos rígidos representados mediante superficies implícitas, basado en una restricción regularizada que se adaptada adecuadamente para el cumplimiento exacto de la restricción de contacto y para ser consistente con la conservación de la energía total. En este contexto se estudian dos enfoques: uno para el contacto elástico puro (sin deformación) formulado con penalización y Lagrange aumentado; y otro basado en un modelo constitutivo para el contacto con penetración. En el segundo enfoque se usa un potencial de penalización que, en ausencia de componentes disipativas, restaura la energía almacenada en el contacto y disipa energía de forma consistente con el modelo continuo cuando las componentes de amortiguamiento y fricción son consideradas. This thesis focuses on the study of several numerical procedures used to solve the dynamics of a multibody system subjected to constraints and impact. The system may be composed by rigid and deformable bodies connected by different types of joints. Within this framework, special attention is paid to consistent methods, which preserve the theoretical behavior of the energy at each time step. In other words, a consistent method keeps the total energy constant in a conservative problem, and provides a positive decrease in the total energy when dissipative forces are present. A numerical algorithm has been developed for solving the dynamical equations of multibody systems, which is energetically consistent. Energetic consistency in contacts and constraints is formulated using Lagrange multipliers, penalty and augmented Lagrange methods. A contact methodology is proposed for rigid bodies with a boundary represented by implicit surfaces. The method is based on a suitable regularized constraint formulation, adapted both to fulfill exactly the contact constraint, and to be consistent with the conservation of the total energy. In this context two different approaches are studied: the first applied to pure elastic contact (without deformation), formulated with penalty and augmented Lagrange; and a second one based on a constitutive model for contact with penetration. In this second approach, a penalty potential is used in the constitutive model, that restores the energy stored in the contact when no dissipative effects are present. On the other hand, the energy is dissipated consistently with the continuous model when friction and damping are considered.
Resumo:
In this dissertation a new numerical method for solving Fluid-Structure Interaction (FSI) problems in a Lagrangian framework is developed, where solids of different constitutive laws can suffer very large deformations and fluids are considered to be newtonian and incompressible. For that, we first introduce a meshless discretization based on local maximum-entropy interpolants. This allows to discretize a spatial domain with no need of tessellation, avoiding the mesh limitations. Later, the Stokes flow problem is studied. The Galerkin meshless method based on a max-ent scheme for this problem suffers from instabilities, and therefore stabilization techniques are discussed and analyzed. An unconditionally stable method is finally formulated based on a Douglas-Wang stabilization. Then, a Langrangian expression for fluid mechanics is derived. This allows us to establish a common framework for fluid and solid domains, such that interaction can be naturally accounted. The resulting equations are also in the need of stabilization, what is corrected with an analogous technique as for the Stokes problem. The fully Lagrangian framework for fluid/solid interaction is completed with simple point-to-point and point-to-surface contact algorithms. The method is finally validated, and some numerical examples show the potential scope of applications.
Resumo:
The implementation of boundary conditions is one of the points where the SPH methodology still has some work to do. The aim of the present work is to provide an in-depth analysis of the most representative mirroring techniques used in SPH to enforce boundary conditions (BC) along solid profiles. We specifically refer to dummy particles, ghost particles, and Takeda et al. [1] boundary integrals. A Pouseuille flow has been used as a example to gradually evaluate the accuracy of the different implementations. Our goal is to test the behavior of the second-order differential operator with the proposed boundary extensions when the smoothing length h and other dicretization parameters as dx/h tend simultaneously to zero. First, using a smoothed continuous approximation of the unidirectional Pouseuille problem, the evolution of the velocity profile has been studied focusing on the values of the velocity and the viscous shear at the boundaries, where the exact solution should be approximated as h decreases. Second, to evaluate the impact of the discretization of the problem, an Eulerian SPH discrete version of the former problem has been implemented and similar results have been monitored. Finally, for the sake of completeness, a 2D Lagrangian SPH implementation of the problem has been also studied to compare the consequences of the particle movement
Resumo:
The airport taxi planning (TP) module is a decision tool intended to guide airport surface management operations. TP is defined by a flow network optimization model that represents flight ground movements and improves aircraft taxiing routes and schedules during periods of aircraft congestion. TP is not intended to operate as a stand‐alone tool for airport operations management: on the contrary, it must be used in conjunction with existing departing and arriving traffic tools and overseen by the taxi planner of the airport, also known as the aircraft ground controller. TP must be flexible in order to accommodate changing inputs while maintaining consistent routes and schedules already delivered from past executions. Within this dynamic environment, the execution time of TP may not exceed a few minutes. Classic methods for solving binary multi‐commodity flow networks with side constraints are not efficient enough; therefore, a Lagrangian decomposition methodology has been adapted to solve it. We demonstrate TP Lagrangian decomposition using actual data from the Madrid‐Barajas Airport
Resumo:
The understanding of the circulation of ocean currents, the exchange of CO2 between atmosphere and oceans, and the influence of the oceans on the distribution of heat on a global scale is key to our ability to predict and assess the future evolution of climate [1, 2]. Global climate change is affecting sea breathing through mechanisms not yet understood.
Resumo:
A global Lagrangian descriptor applied to the Kuroshio current
Resumo:
Penguin colonies represent some of the most concentrated sources of ammonia emissions to the atmosphere in the world. The ammonia emitted into the atmosphere can have a large influence on the nitrogen cycling of ecosystems near the colonies. However, despite the ecological importance of the emissions, no measurements of ammonia emissions from penguin colonies have been made. The objective of this work was to determine the ammonia emission rate of a penguin colony using inverse-dispersion modelling and gradient methods. We measured meteorological variables and mean atmospheric concentrations of ammonia at seven locations near a colony of Adélie penguins in Antarctica to provide input data for inverse-dispersion modelling. Three different atmospheric dispersion models (ADMS, LADD and a Lagrangian stochastic model) were used to provide a robust emission estimate. The Lagrangian stochastic model was applied both in ‘forwards’ and ‘backwards’ mode to compare the difference between the two approaches. In addition, the aerodynamic gradient method was applied using vertical profiles of mean ammonia concentrations measured near the centre of the colony. The emission estimates derived from the simulations of the three dispersion models and the aerodynamic gradient method agreed quite well, giving a mean emission of 1.1 g ammonia per breeding pair per day (95% confidence interval: 0.4–2.5 g ammonia per breeding pair per day). This emission rate represents a volatilisation of 1.9% of the estimated nitrogen excretion of the penguins, which agrees well with that estimated from a temperature-dependent bioenergetics model. We found that, in this study, the Lagrangian stochastic model seemed to give more reliable emission estimates in ‘forwards’ mode than in ‘backwards’ mode due to the assumptions made.
Resumo:
Lagrangian descriptors are a recent technique which reveals geometrical structures in phase space and which are valid for aperiodically time dependent dynamical systems. We discuss a general methodology for constructing them and we discuss a "heuristic argument" that explains why this method is successful. We support this argument by explicit calculations on a benchmark problem. Several other benchmark examples are considered that allow us to assess the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field ("time averages"). In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods.
Resumo:
La embriogénesis es el proceso mediante el cual una célula se convierte en un ser un vivo. A lo largo de diferentes etapas de desarrollo, la población de células va proliferando a la vez que el embrión va tomando forma y se configura. Esto es posible gracias a la acción de varios procesos genéticos, bioquímicos y mecánicos que interaccionan y se regulan entre ellos formando un sistema complejo que se organiza a diferentes escalas espaciales y temporales. Este proceso ocurre de manera robusta y reproducible, pero también con cierta variabilidad que permite la diversidad de individuos de una misma especie. La aparición de la microscopía de fluorescencia, posible gracias a proteínas fluorescentes que pueden ser adheridas a las cadenas de expresión de las células, y los avances en la física óptica de los microscopios han permitido observar este proceso de embriogénesis in-vivo y generar secuencias de imágenes tridimensionales de alta resolución espacio-temporal. Estas imágenes permiten el estudio de los procesos de desarrollo embrionario con técnicas de análisis de imagen y de datos, reconstruyendo dichos procesos para crear la representación de un embrión digital. Una de las más actuales problemáticas en este campo es entender los procesos mecánicos, de manera aislada y en interacción con otros factores como la expresión genética, para que el embrión se desarrolle. Debido a la complejidad de estos procesos, estos problemas se afrontan mediante diferentes técnicas y escalas específicas donde, a través de experimentos, pueden hacerse y confrontarse hipótesis, obteniendo conclusiones sobre el funcionamiento de los mecanismos estudiados. Esta tesis doctoral se ha enfocado sobre esta problemática intentando mejorar las metodologías del estado del arte y con un objetivo específico: estudiar patrones de deformación que emergen del movimiento organizado de las células durante diferentes estados del desarrollo del embrión, de manera global o en tejidos concretos. Estudios se han centrado en la mecánica en relación con procesos de señalización o interacciones a nivel celular o de tejido. En este trabajo, se propone un esquema para generalizar el estudio del movimiento y las interacciones mecánicas que se desprenden del mismo a diferentes escalas espaciales y temporales. Esto permitiría no sólo estudios locales, si no estudios sistemáticos de las escalas de interacción mecánica dentro de un embrión. Por tanto, el esquema propuesto obvia las causas de generación de movimiento (fuerzas) y se centra en la cuantificación de la cinemática (deformación y esfuerzos) a partir de imágenes de forma no invasiva. Hoy en día las dificultades experimentales y metodológicas y la complejidad de los sistemas biológicos impiden una descripción mecánica completa de manera sistemática. Sin embargo, patrones de deformación muestran el resultado de diferentes factores mecánicos en interacción con otros elementos dando lugar a una organización mecánica, necesaria para el desarrollo, que puede ser cuantificado a partir de la metodología propuesta en esta tesis. La metodología asume un medio continuo descrito de forma Lagrangiana (en función de las trayectorias de puntos materiales que se mueven en el sistema en lugar de puntos espaciales) de la dinámica del movimiento, estimado a partir de las imágenes mediante métodos de seguimiento de células o de técnicas de registro de imagen. Gracias a este esquema es posible describir la deformación instantánea y acumulada respecto a un estado inicial para cualquier dominio del embrión. La aplicación de esta metodología a imágenes 3D + t del pez zebra sirvió para desvelar estructuras mecánicas que tienden a estabilizarse a lo largo del tiempo en dicho embrión, y que se organizan a una escala semejante al del mapa de diferenciación celular y con indicios de correlación con patrones de expresión genética. También se aplicó la metodología al estudio del tejido amnioserosa de la Drosophila (mosca de la fruta) durante el cierre dorsal, obteniendo indicios de un acoplamiento entre escalas subcelulares, celulares y supracelulares, que genera patrones complejos en respuesta a la fuerza generada por los esqueletos de acto-myosina. En definitiva, esta tesis doctoral propone una estrategia novedosa de análisis de la dinámica celular multi-escala que permite cuantificar patrones de manera inmediata y que además ofrece una representación que reconstruye la evolución de los procesos como los ven las células, en lugar de como son observados desde el microscopio. Esta metodología por tanto permite nuevas formas de análisis y comparación de embriones y tejidos durante la embriogénesis a partir de imágenes in-vivo. ABSTRACT The embryogenesis is the process from which a single cell turns into a living organism. Through several stages of development, the cell population proliferates at the same time the embryo shapes and the organs develop gaining their functionality. This is possible through genetic, biochemical and mechanical factors that are involved in a complex interaction of processes organized in different levels and in different spatio-temporal scales. The embryogenesis, through this complexity, develops in a robust and reproducible way, but allowing variability that makes possible the diversity of living specimens. The advances in physics of microscopes and the appearance of fluorescent proteins that can be attached to expression chains, reporting about structural and functional elements of the cell, have enabled for the in-vivo observation of embryogenesis. The imaging process results in sequences of high spatio-temporal resolution 3D+time data of the embryogenesis as a digital representation of the embryos that can be further analyzed, provided new image processing and data analysis techniques are developed. One of the most relevant and challenging lines of research in the field is the quantification of the mechanical factors and processes involved in the shaping process of the embryo and their interactions with other embryogenesis factors such as genetics. Due to the complexity of the processes, studies have focused on specific problems and scales controlled in the experiments, posing and testing hypothesis to gain new biological insight. However, methodologies are often difficult to be exported to study other biological phenomena or specimens. This PhD Thesis is framed within this paradigm of research and tries to propose a systematic methodology to quantify the emergent deformation patterns from the motion estimated in in-vivo images of embryogenesis. Thanks to this strategy it would be possible to quantify not only local mechanisms, but to discover and characterize the scales of mechanical organization within the embryo. The framework focuses on the quantification of the motion kinematics (deformation and strains), neglecting the causes of the motion (forces), from images in a non-invasive way. Experimental and methodological challenges hamper the quantification of exerted forces and the mechanical properties of tissues. However, a descriptive framework of deformation patterns provides valuable insight about the organization and scales of the mechanical interactions, along the embryo development. Such a characterization would help to improve mechanical models and progressively understand the complexity of embryogenesis. This framework relies on a Lagrangian representation of the cell dynamics system based on the trajectories of points moving along the deformation. This approach of analysis enables the reconstruction of the mechanical patterning as experienced by the cells and tissues. Thus, we can build temporal profiles of deformation along stages of development, comprising both the instantaneous events and the cumulative deformation history. The application of this framework to 3D + time data of zebrafish embryogenesis allowed us to discover mechanical profiles that stabilized through time forming structures that organize in a scale comparable to the map of cell differentiation (fate map), and also suggesting correlation with genetic patterns. The framework was also applied to the analysis of the amnioserosa tissue in the drosophila’s dorsal closure, revealing that the oscillatory contraction triggered by the acto-myosin network organized complexly coupling different scales: local force generation foci, cellular morphology control mechanisms and tissue geometrical constraints. In summary, this PhD Thesis proposes a theoretical framework for the analysis of multi-scale cell dynamics that enables to quantify automatically mechanical patterns and also offers a new representation of the embryo dynamics as experienced by cells instead of how the microscope captures instantaneously the processes. Therefore, this framework enables for new strategies of quantitative analysis and comparison between embryos and tissues during embryogenesis from in-vivo images.
Resumo:
Esta tesis propone una completa formulación termo-mecánica para la simulación no-lineal de mecanismos flexibles basada en métodos libres de malla. El enfoque se basa en tres pilares principales: la formulación de Lagrangiano total para medios continuos, la discretización de Bubnov-Galerkin, y las funciones de forma libres de malla. Los métodos sin malla se caracterizan por la definición de un conjunto de funciones de forma en dominios solapados, junto con una malla de integración de las ecuaciones discretas de balance. Dos tipos de funciones de forma se han seleccionado como representación de las familias interpolantes (Funciones de Base Radial) y aproximantes (Mínimos Cuadrados Móviles). Su formulación se ha adaptado haciendo sus parámetros compatibles, y su ausencia de conectividad predefinida se ha aprovechado para interconectar múltiples dominios de manera automática, permitiendo el uso de mallas de fondo no conformes. Se propone una formulación generalizada de restricciones, juntas y contactos, válida para sólidos rígidos y flexibles, siendo estos últimos discretizados mediante elementos finitos (MEF) o libres de malla. La mayor ventaja de este enfoque reside en que independiza completamente el dominio con respecto de las uniones y acciones externas a cada sólido, permitiendo su definición incluso fuera del contorno. Al mismo tiempo, también se minimiza el número de ecuaciones de restricción necesarias para la definición de uniones realistas. Las diversas validaciones, ejemplos y comparaciones detalladas muestran como el enfoque propuesto es genérico y extensible a un gran número de sistemas. En concreto, las comparaciones con el MEF indican una importante reducción del error para igual número de nodos, tanto en simulaciones mecánicas, como térmicas y termo-mecánicas acopladas. A igualdad de error, la eficiencia numérica de los métodos libres de malla es mayor que la del MEF cuanto más grosera es la discretización. Finalmente, la formulación se aplica a un problema de diseño real sobre el mantenimiento de estructuras masivas en el interior de un reactor de fusión, demostrando su viabilidad en análisis de problemas reales, y a su vez mostrando su potencial para su uso en simulación en tiempo real de sistemas no-lineales. A new complete formulation is proposed for the simulation of nonlinear dynamic of multibody systems with thermo-mechanical behaviour. The approach is founded in three main pillars: total Lagrangian formulation, Bubnov-Galerkin discretization, and meshfree shape functions. Meshfree methods are characterized by the definition of a set of shape functions in overlapping domains, and a background grid for integration of the Galerkin discrete equations. Two different types of shape functions have been chosen as representatives of interpolation (Radial Basis Functions), and approximation (Moving Least Squares) families. Their formulation has been adapted to use compatible parameters, and their lack of predefined connectivity is used to interconnect different domains seamlessly, allowing the use of non-conforming meshes. A generalized formulation for constraints, joints, and contacts is proposed, which is valid for rigid and flexible solids, being the later discretized using either finite elements (FEM) or meshfree methods. The greatest advantage of this approach is that makes the domain completely independent of the external links and actions, allowing to even define them outside of the boundary. At the same time, the number of constraint equations needed for defining realistic joints is minimized. Validation, examples, and benchmarks are provided for the proposed formulation, demonstrating that the approach is generic and extensible to further problems. Comparisons with FEM show a much lower error for the same number of nodes, both for mechanical and thermal analyses. The numerical efficiency is also better when coarse discretizations are used. A final demonstration to a real problem for handling massive structures inside of a fusion reactor is presented. It demonstrates that the application of meshfree methods is feasible and can provide an advantage towards the definition of nonlinear real-time simulation models.