6 resultados para approximation error

em Universidad Politécnica de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many computer vision and human-computer interaction applications developed in recent years need evaluating complex and continuous mathematical functions as an essential step toward proper operation. However, rigorous evaluation of this kind of functions often implies a very high computational cost, unacceptable in real-time applications. To alleviate this problem, functions are commonly approximated by simpler piecewise-polynomial representations. Following this idea, we propose a novel, efficient, and practical technique to evaluate complex and continuous functions using a nearly optimal design of two types of piecewise linear approximations in the case of a large budget of evaluation subintervals. To this end, we develop a thorough error analysis that yields asymptotically tight bounds to accurately quantify the approximation performance of both representations. It provides an improvement upon previous error estimates and allows the user to control the trade-off between the approximation error and the number of evaluation subintervals. To guarantee real-time operation, the method is suitable for, but not limited to, an efficient implementation in modern Graphics Processing Units (GPUs), where it outperforms previous alternative approaches by exploiting the fixed-function interpolation routines present in their texture units. The proposed technique is a perfect match for any application requiring the evaluation of continuous functions, we have measured in detail its quality and efficiency on several functions, and, in particular, the Gaussian function because it is extensively used in many areas of computer vision and cybernetics, and it is expensive to evaluate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The analysis of complex nonlinear systems is often carried out using simpler piecewise linear representations of them. A principled and practical technique is proposed to linearize and evaluate arbitrary continuous nonlinear functions using polygonal (continuous piecewise linear) models under the L1 norm. A thorough error analysis is developed to guide an optimal design of two kinds of polygonal approximations in the asymptotic case of a large budget of evaluation subintervals N. The method allows the user to obtain the level of linearization (N) for a target approximation error and vice versa. It is suitable for, but not limited to, an efficient implementation in modern Graphics Processing Units (GPUs), allowing real-time performance of computationally demanding applications. The quality and efficiency of the technique has been measured in detail on two nonlinear functions that are widely used in many areas of scientific computing and are expensive to evaluate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La evolución de los teléfonos móviles inteligentes, dotados de cámaras digitales, está provocando una creciente demanda de aplicaciones cada vez más complejas que necesitan algoritmos de visión artificial en tiempo real; puesto que el tamaño de las señales de vídeo no hace sino aumentar y en cambio el rendimiento de los procesadores de un solo núcleo se ha estancado, los nuevos algoritmos que se diseñen para visión artificial han de ser paralelos para poder ejecutarse en múltiples procesadores y ser computacionalmente escalables. Una de las clases de procesadores más interesantes en la actualidad se encuentra en las tarjetas gráficas (GPU), que son dispositivos que ofrecen un alto grado de paralelismo, un excelente rendimiento numérico y una creciente versatilidad, lo que los hace interesantes para llevar a cabo computación científica. En esta tesis se exploran dos aplicaciones de visión artificial que revisten una gran complejidad computacional y no pueden ser ejecutadas en tiempo real empleando procesadores tradicionales. En cambio, como se demuestra en esta tesis, la paralelización de las distintas subtareas y su implementación sobre una GPU arrojan los resultados deseados de ejecución con tasas de refresco interactivas. Asimismo, se propone una técnica para la evaluación rápida de funciones de complejidad arbitraria especialmente indicada para su uso en una GPU. En primer lugar se estudia la aplicación de técnicas de síntesis de imágenes virtuales a partir de únicamente dos cámaras lejanas y no paralelas—en contraste con la configuración habitual en TV 3D de cámaras cercanas y paralelas—con información de color y profundidad. Empleando filtros de mediana modificados para la elaboración de un mapa de profundidad virtual y proyecciones inversas, se comprueba que estas técnicas son adecuadas para una libre elección del punto de vista. Además, se demuestra que la codificación de la información de profundidad con respecto a un sistema de referencia global es sumamente perjudicial y debería ser evitada. Por otro lado se propone un sistema de detección de objetos móviles basado en técnicas de estimación de densidad con funciones locales. Este tipo de técnicas es muy adecuada para el modelado de escenas complejas con fondos multimodales, pero ha recibido poco uso debido a su gran complejidad computacional. El sistema propuesto, implementado en tiempo real sobre una GPU, incluye propuestas para la estimación dinámica de los anchos de banda de las funciones locales, actualización selectiva del modelo de fondo, actualización de la posición de las muestras de referencia del modelo de primer plano empleando un filtro de partículas multirregión y selección automática de regiones de interés para reducir el coste computacional. Los resultados, evaluados sobre diversas bases de datos y comparados con otros algoritmos del estado del arte, demuestran la gran versatilidad y calidad de la propuesta. Finalmente se propone un método para la aproximación de funciones arbitrarias empleando funciones continuas lineales a tramos, especialmente indicada para su implementación en una GPU mediante el uso de las unidades de filtraje de texturas, normalmente no utilizadas para cómputo numérico. La propuesta incluye un riguroso análisis matemático del error cometido en la aproximación en función del número de muestras empleadas, así como un método para la obtención de una partición cuasióptima del dominio de la función para minimizar el error. ABSTRACT The evolution of smartphones, all equipped with digital cameras, is driving a growing demand for ever more complex applications that need to rely on real-time computer vision algorithms. However, video signals are only increasing in size, whereas the performance of single-core processors has somewhat stagnated in the past few years. Consequently, new computer vision algorithms will need to be parallel to run on multiple processors and be computationally scalable. One of the most promising classes of processors nowadays can be found in graphics processing units (GPU). These are devices offering a high parallelism degree, excellent numerical performance and increasing versatility, which makes them interesting to run scientific computations. In this thesis, we explore two computer vision applications with a high computational complexity that precludes them from running in real time on traditional uniprocessors. However, we show that by parallelizing subtasks and implementing them on a GPU, both applications attain their goals of running at interactive frame rates. In addition, we propose a technique for fast evaluation of arbitrarily complex functions, specially designed for GPU implementation. First, we explore the application of depth-image–based rendering techniques to the unusual configuration of two convergent, wide baseline cameras, in contrast to the usual configuration used in 3D TV, which are narrow baseline, parallel cameras. By using a backward mapping approach with a depth inpainting scheme based on median filters, we show that these techniques are adequate for free viewpoint video applications. In addition, we show that referring depth information to a global reference system is ill-advised and should be avoided. Then, we propose a background subtraction system based on kernel density estimation techniques. These techniques are very adequate for modelling complex scenes featuring multimodal backgrounds, but have not been so popular due to their huge computational and memory complexity. The proposed system, implemented in real time on a GPU, features novel proposals for dynamic kernel bandwidth estimation for the background model, selective update of the background model, update of the position of reference samples of the foreground model using a multi-region particle filter, and automatic selection of regions of interest to reduce computational cost. The results, evaluated on several databases and compared to other state-of-the-art algorithms, demonstrate the high quality and versatility of our proposal. Finally, we propose a general method for the approximation of arbitrarily complex functions using continuous piecewise linear functions, specially formulated for GPU implementation by leveraging their texture filtering units, normally unused for numerical computation. Our proposal features a rigorous mathematical analysis of the approximation error in function of the number of samples, as well as a method to obtain a suboptimal partition of the domain of the function to minimize approximation error.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a diagnosis algorithm for locating a certain kind of errors in logic programs: variable binding errors that result in abstract symptoms during compile-time checking of assertions based on abstract interpretation. The diagnoser analyzes the graph generated by the abstract interpreter, which is a provably safe approximation of the program semantics. The proposed algorithm traverses this graph to find the point where the actual error originates (a reason of the symptom), leading to the point the error has been reported (the symptom). The procedure is fully automatic, not requiring any interaction with the user. A prototype diagnoser has been implemented and preliminary results are encouraging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present analytical formulas to estimate the variation of achieved deflection for an Earth-impacting asteroid following a continuous tangential low-thrust deflection strategy. Relatively simple analytical expressions are obtained with the aid of asymptotic theory and the use of Peláez orbital elements set, an approach that is particularly suitable to the asteroid deflection problem and is not limited to small eccentricities. The accuracy of the proposed formulas is evaluated numerically showing negligible error for both early and late deflection campaigns. The results will be of aid in planning future low-thrust asteroid deflection missions