4 resultados para anomaly
em Universidad Politécnica de Madrid
Resumo:
The presented work proposes a new approach for anomaly detection. This approach is based on changes in a population of evolving agents under stress. If conditions are appropriate, changes in the population (modeled by the bioindicators) are representative of the alterations to the environment. This approach, based on an ecological view, improves functionally traditional approaches to the detection of anomalies. To verify this assertion, experiments based on Network Intrussion Detection Systems are presented. The results are compared with the behaviour of other bioinspired approaches and machine learning techniques.
Resumo:
Cognitive wireless sensor network (CWSN) is a new paradigm, integrating cognitive features in traditional wireless sensor networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in cognitive wireless sensor networks is an important problem since these kinds of networks manage critical applications and data. The specific constraints of WSN make the problem even more critical, and effective solutions have not yet been implemented. Primary user emulation (PUE) attack is the most studied specific attack deriving from new cognitive features. This work discusses a new approach, based on anomaly behavior detection and collaboration, to detect the primary user emulation attack in CWSN scenarios. Two non-parametric algorithms, suitable for low-resource networks like CWSNs, have been used in this work: the cumulative sum and data clustering algorithms. The comparison is based on some characteristics such as detection delay, learning time, scalability, resources, and scenario dependency. The algorithms have been tested using a cognitive simulator that provides important results in this area. Both algorithms have shown to be valid in order to detect PUE attacks, reaching a detection rate of 99% and less than 1% of false positives using collaboration.
Resumo:
The performances of two rotor-damaged commercial anemometers (Vector Instruments A100 LK) were studied. The calibration results (i.e. the transfer function) were very linear, the aerodynamic behavior being more efficient than the one shown by both anemometers equipped with undamaged rotors. No detection of the anomaly (the rotors'damage) was possible based on the calibration results. However, the Fourier analysis clearly revealed this anomaly.
Resumo:
The aim of this work is an approach using multisensor remote sensing techniques to recognize the potential remains and recreate the original landscape of three archaeological sites. We investigate the spectral characteristics of the reflectance parameter and emissivity in the pattern recognition of archaeological materials in several hyperspectral scenes of the prehispanic site in Palmar Sur (Costa Rica), the Jarama Valley site and the celtiberian city of Segeda in Spain. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of HyMAP, AHS, MASTER and ATM have been used. Several experiments on natural scenarios of Costa Rica and Spain of different complexity, have been designed. Spectral patterns and thermal anomalies have been calculated as evidences of buried remains and change detection. First results, land cover change analyses and their consequences in the digital heritage registration are discussed.