1 resultado para agroindustria

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo del presente trabajo es determinar la localización óptima de una planta de producción de 30.000 m3/año de bioetanol a partir de tubérculos de pataca (Helianthus tuberosus L.) cultivada en regadío, en tierras de barbecho de la Cuenca Hidrográfica del Duero (CH Duero). Inicialmente se elaboró, a partir de datos bibliográficos, un modelo de producción de pataca en base a una ecuación de regresión que relaciona datos experimentales de rendimientos de variedades tardías con variables agroclimáticas. Así se obtuvo una función de producción basada en la cantidad de agua disponible (precipitación efectiva + dosis de riego) y en la radiación global acumulada en el periodo brotación‐senescencia del cultivo. A continuación se estima la superficie potencial de cultivo de pataca en la CH Duero a partir de la superficie arable en regadío cartografiada por el Sistema de Ocupación del Suelo (SIOSE), a la cual se le aplican, en base a los requerimientos del cultivo, unas restricciones climáticas, edafológicas, topográficas y logísticas mediante el uso de Sistemas de Información Geográfica (SIG). La proporción de superficie de regadío restringida se cuantifica a escala municipal con el fin de calcular la superficie de barbecho en regadío apta para el cultivo de pataca. A partir de las bases de datos georreferenciadas de precipitación, radiación global, y la dotación de agua para el riego de cultivos no específicos establecida en el Plan Hidrológico de la Cuenca del Duero a escala comarcal, se estimó la producción potencial de tubérculos de pataca sobre la superficie de barbecho de regadío según el modelo de producción elaborado. Así, en las 53.360 ha de barbecho en regadío aptas para el cultivo de pataca se podrían producir 3,8 Mt de tubérculos al año (80 % de humedad) (761.156 t ms/año) de los que se podría obtener 304.462 m3/año de bioetanol, considerando un rendimiento en la transformación de 12,5 kg mf/l de etanol. Se estiman los costes de las labores de cultivo de pataca así como los costes de la logística de suministro a una planta de transformación considerando una distancia media de transporte de 25 km, en base a las hojas de cálculo de utilización de aperos y maquinaria agrícola oficiales del Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA). Considerando el balance de costes asociados a la producción de bioetanol (costes de transformación, distribución y transporte del producto, costes estructurales de la planta, ahorro de costes por la utilización de las vinazas generadas en el proceso como fertilizante y un beneficio industrial), se ha estimado que el coste de producción de bioetanol a partir de tubérculos de pataca asciende a 61,03 c€/l. Se calculan los beneficios fiscales para el Estado por el cultivo de 5.522 ha de pataca que suministren la materia prima necesaria para una planta de bioetanol de 30.000 m3/año, en concepto de cotizaciones a la Seguridad Social de los trabajadores, impuestos sobre el valor añadido de los productos consumidos, impuesto sobre sociedades y ahorro de las prestaciones por desempleo. Se obtuvieron unos beneficios fiscales de 10,25 c€ por litro de bioetanol producido. El coste de producción de bioetanol depende del rendimiento de tubérculos por hectárea y de la distancia de transporte desde las zonas de producción de la materia prima hasta la planta. Se calculó la distancia máxima de transporte para que el precio de coste del bioetanol producido sea competitivo con el precio de mercado del bioetanol. Como resultado se determinó que el precio del bioetanol (incluido un beneficio industrial del 15%) de la planta sería igual o inferior al precio de venta en el mercado (66,35 c€/l) con una distancia máxima de transporte de 25 km y un rendimiento mínimo del cultivo de 60,1 t mf/ha. Una vez conocido el área de influencia de la planta según la distancia de transporte máxima, se determinó la localización óptima de la planta de producción de bioetanol mediante un proceso de ubicación‐asignación realizado con SIG. Para ello se analizan los puntos candidatos a la ubicación de la planta según el cumplimiento de unos requerimientos técnicos establecidos (distancia a fuentes de suministro eléctrico y de recursos hídricos, distancia a estaciones de ferrocarril, distancia a núcleos urbanos y existencia de Espacios Naturales Protegidos) que minimizan la distancia de transporte maximizando la cantidad de biomasa disponible según la producción potencial estimada anteriormente. Por último, la superficie destinada al cultivo de pataca en el área de influencia de la planta se determina en base a un patrón de distribución del cultivo alrededor de una agroindustria. Dicho patrón se ha obtenido a partir del análisis del grado de ocupación del cultivo de la remolacha en función de la distancia de transporte a la planta azucarera de Miranda de Ebro (Burgos). El patrón resultante muestra que la relación entre el grado de ocupación del suelo por el cultivo y la distancia de transporte a la planta siguen una ecuación logística. La localización óptima que se ha obtenido mediante la metodología descrita se ubica en el municipio leonés de El Burgo Ranero, donde la producción potencial de tubérculos de pataca en la superficie de barbecho situada en un radio de acción de 25 km es de 375.665 t mf/año, superando las 375.000 t mf requeridas anualmente por la planta de bioetanol. ABSTRACT Jerusalem artichoke (Helianthus tuberosus L.) is a harsh crop with a high potential for biomass production. Its main use is related to bioethanol production from the carbohydrates, inulin mainly, accumulated in its tubers at the end of the crop cycle. The aerial biomass could be used as solid biofuel to provide energy to the bioethanol production process. Therefore, Jerusalem artichoke is a promising crop as feedstock for biofuel production in order to achieve the biofuels consumption objectives established by the Government of Spain (PER 2011‐2020 and RDL 4/2013) and the European Union (Directive 2009/28/EC). This work aims at the determination of the optimal location for a 30,000 m3/year bioethanol production plant from Jerusalem artichoke tubers in the Duero river basin. With this purpose, a crop production model was developed by means of a regression equation that relates experimental yield data of late Jerusalem artichoke varieties with pedo‐climatic parameters from a bibliographic data matrix. The resulting crop production model was based on the crop water availability (including effective rainfall and irrigation water supplied) and on global radiation accumulated in the crop emergence‐senescence period. The crop potential cultivation area for Jerusalem artichoke in the Duero basin was estimated using the georeferenced irrigated arable land from the “Sistema de Ocupación del Suelo” (SIOSE) of Spain. Climatic, soil, slope and logistic restrictions were considered by means of Geographic Information Systems (GIS). The limited potential growing area was then applied to a municipality scale in order to calculate the amount of fallow land suitable for Jerusalem artichoke production. Rainfall and global radiation georeferenced layers as well as data of irrigation water supply for crop production (established within the Duero Hydrologic Plan) were use to estimate the potential production of Jerusalem artichoke tubers in the suitable fallow land according to the crop production model. As a result of this estimation, there are 53,360 ha of fallow land suitable for Jerusalem artichoke production in the Duero basin, where 3.8 M t fm/year could be produced. Considering a bioethanol processing yield of 12.5 kg mf per liter of bioethanol, the above mentioned tuber potential production could be processed in 304,462 m3/year of bioethanol. The Jerusalem crop production costs and the logistic supply costs (considering an average transport distance of 25 km) were estimated according to official agricultural machinery cost calculation sheets of the Minister of Agriculture of Spain (MAGRAMA). The bioethanol production cost from Jerusalem artichoke tubers was calculated considering bioethanol processing, transport and structural costs, industrial profits as well as plant cost savings from the use of vinasses as fertilizer. The resulting bioetanol production cost from Jerusalem artichoke tubers was 61.03 c€/l. Additionally, revenues for the state coffers regarding Social Security contributions, added value taxes of consumed raw materials, corporation tax and unemployment benefit savings due to the cultivation of 5,522 ha of Jerusalem artichoke for the 30.000 m3/year bioethanol plant supply were calculated. The calculated revenues amounted to 10.25 c€/l. Bioethanol production cost and consequently the bioethanol plant economic viability are strongly related to the crop yield as well as to road transport distance from feedstock production areas to the processing plant. The previously estimated bioethanol production cost was compared to the bioethanol market price in order to determine the maximum supply transport distance and the minimum crop yield to reach the bioethanol plant economic viability. The results showed that the proposed plant would be economically viable at a maximum transport distance of 25 km and at a crop yield not less than 60.1 t fm/ha. By means of a GIS location‐allocation analysis, the optimal bioethanol plant location was determined. Suitable candidates were detected according to several plant technical requirements (distance to power and water supply sources, distance to freight station, and distance to urban areas and to Natural Protected Areas). The optimal bioethanol plant location must minimize the supply transport distance whereas it maximizes the amount of available biomass according to the previously estimated biomass potential production. Lastly, the agricultural area around the bioethanol plant finally dedicated to Jerusalem artichoke cultivation was planned according to a crop distribution model. The crop distribution model was established from the analysis of the relation between the sugar beet (Beta vulgaris L.) cropping area and the road transport distance from the sugar processing plant of Miranda de Ebro (Burgos, North of Spain). The optimal location was situated in the municipality of ‘El Burgo Ranero’ in the province of León. The potential production of Jerusalem artichoke tubers in the fallow land within 25 km distance from the plant location was 375,665 t fm/year, which exceeds the amount of biomass yearly required by the bioethanol plant.