2 resultados para advective
em Universidad Politécnica de Madrid
Resumo:
Diffusion controls the gaseous transport process in soils when advective transport is almost null. Knowledge of the soil structure and pore connectivity are critical issues to understand and modelling soil aeration, sequestration or emission of greenhouse gasses, volatilization of volatile organic chemicals among other phenomena. In the last decades these issues increased our attention as scientist have realize that soil is one of the most complex materials on the earth, within which many biological, physical and chemical processes that support life and affect climate change take place. A quantitative and explicit characterization of soil structure is difficult because of the complexity of the pore space. This is the main reason why most theoretical approaches to soil porosity are idealizations to simplify this system. In this work, we proposed a more realistic attempt to capture the complexity of the system developing a model that considers the size and location of pores in order to relate them into a network. In the model we interpret porous soils as heterogeneous networks where pores are represented by nodes, characterized by their size and spatial location, and the links representing flows between them. In this work we perform an analysis of the community structure of porous media of soils represented as networks. For different real soils samples, modelled as heterogeneous complex networks, spatial communities of pores have been detected depending on the values of the parameters of the porous soil model used. These types of models are named as Heterogeneous Preferential Attachment (HPA). Developing an exhaustive analysis of the model, analytical solutions are obtained for the degree densities and degree distribution of the pore networks generated by the model in the thermodynamic limit and shown that the networks exhibit similar properties to those observed in other complex networks. With the aim to study in more detail topological properties of these networks, the presence of soil pore community structures is studied. The detection of communities of pores, as groups densely connected with only sparser connections between groups, could contribute to understand the mechanisms of the diffusion phenomena in soils.
Resumo:
This article reviews several recently developed Lagrangian tools and shows how their com- bined use succeeds in obtaining a detailed description of purely advective transport events in general aperiodic flows. In particular, because of the climate impact of ocean transport processes, we illustrate a 2D application on altimeter data sets over the area of the Kuroshio Current, although the proposed techniques are general and applicable to arbitrary time depen- dent aperiodic flows. The first challenge for describing transport in aperiodical time dependent flows is obtaining a representation of the phase portrait where the most relevant dynamical features may be identified. This representation is accomplished by using global Lagrangian descriptors that when applied for instance to the altimeter data sets retrieve over the ocean surface a phase portrait where the geometry of interconnected dynamical systems is visible. The phase portrait picture is essential because it evinces which transport routes are acting on the whole flow. Once these routes are roughly recognised it is possible to complete a detailed description by the direct computation of the finite time stable and unstable manifolds of special hyperbolic trajectories that act as organising centres of the flow.