8 resultados para adaptive procedures elasticity

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element hp-adaptivity is a technology that allows for very accurate numerical solutions. When applied to open region problems such as radar cross section prediction or antenna analysis, a mesh truncation method needs to be used. This paper compares the following mesh truncation methods in the context of hp-adaptive methods: Infinite Elements, Perfectly Matched Layers and an iterative boundary element based methodology. These methods have been selected because they are exact at the continuous level (a desirable feature required by the extreme accuracy delivered by the hp-adaptive strategy) and they are easy to integrate with the logic of hp-adaptivity. The comparison is mainly based on the number of degrees of freedom needed for each method to achieve a given level of accuracy. Computational times are also included. Two-dimensional examples are used, but the conclusions directly extrapolated to the three dimensional case.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we show the possibility of applying adaptive procedures as an alternative to the well-known philosophy of standard Boundary Elements. The three characteristic steps of adaptive procedures, i.e. hierarchical shape functions families, indicator criteria, and a posteriori estimation, can be defined in order to govern an automatic refinement and stopping of the solution process. A computer program to treat potential problems, called QUEIMADA, has been developed to show the capabilities of the new idea.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the development and application of the p-adaptive BIEM version in elastostatics. The basic concepts underlying the p-adaptive technique are summarized and discussed. Some Pascal pseudocodes which show the way how such a technique can be implemented easily in microcomputers are also provided. Both the applicability and the accuracy of the method proposed here are illustrated through a numerical example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces the p-adaptive version of the boundary element method as a natural extension of the homonymous finite element approach. After a brief introduction to adaptive techniques through their finite element formulation in elastostatics, the concepts are cast into the boundary element environment. Thus, the p-adaptive version of boundary integral methods is shown to be a generalization of already well known ideas. In order to show the power of these numerical procedures, the results of two practical analysis using both methods are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents the possibility of implementing a p-adaptive process with the B.E.M. Although the exemples show that good results can be obtained with a limited amount of storage and with the simple ideas explained above, more research is needed in order to improve the two main problems of the method, i.e.: the criteria of where to refine and until what degree. Mathematically based reasoning is still lacking and will be useful to simplify the decission making. Nevertheless the method seems promising and, we hope, opens a path for a series of research lines of maximum interest. Although the paper has dealt only with plane potential problem the extension to plane elasticity as well as to 3-D potential problem is straight-forward.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monte Carlo (MC) methods are widely used in signal processing, machine learning and communications for statistical inference and stochastic optimization. A well-known class of MC methods is composed of importance sampling and its adaptive extensions (e.g., population Monte Carlo). In this work, we introduce an adaptive importance sampler using a population of proposal densities. The novel algorithm provides a global estimation of the variables of interest iteratively, using all the samples generated. The cloud of proposals is adapted by learning from a subset of previously generated samples, in such a way that local features of the target density can be better taken into account compared to single global adaptation procedures. Numerical results show the advantages of the proposed sampling scheme in terms of mean absolute error and robustness to initialization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The postprocessing or secret-key distillation process in quantum key distribution (QKD) mainly involves two well-known procedures: information reconciliation and privacy amplification. Information or key reconciliation has been customarily studied in terms of efficiency. During this, some information needs to be disclosed for reconciling discrepancies in the exchanged keys. The leakage of information is lower bounded by a theoretical limit, and is usually parameterized by the reconciliation efficiency (or inefficiency), i.e. the ratio of additional information disclosed over the Shannon limit. Most techniques for reconciling errors in QKD try to optimize this parameter. For instance, the well-known Cascade (probably the most widely used procedure for reconciling errors in QKD) was recently shown to have an average efficiency of 1.05 at the cost of a high interactivity (number of exchanged messages). Modern coding techniques, such as rate-adaptive low-density parity-check (LDPC) codes were also shown to achieve similar efficiency values exchanging only one message, or even better values with few interactivity and shorter block-length codes.