22 resultados para active power reserve for frequency control
em Universidad Politécnica de Madrid
Resumo:
In this paper the power-frequency control of hydropower plants with long penstocks is addressed. In such configuration the effects of pressure waves cannot be neglected and therefore commonly used criteria for adjustment of PID governors would not be appropriate. A second-order Π model of the turbine-penstock based on a lumped parameter approach is considered. A correction factor is introduced in order to approximate the model frequency response to the continuous case in the frequency interval of interest. Using this model, several criteria are analysed for adjusting the PI governor of a hydropower plant operating in an isolated system. Practical criteria for adjusting the PI governor are given. The results are applied to a real case of a small island where the objective is to achieve a generation 100% renewable (wind and hydro). Frequency control is supposed to be provided exclusively by the hydropower plant. It is verified that the usual criterion for tuning the PI controller of isolated hydro plants gives poor results. However, with the new proposed adjustment, the time response is considerably improved
Resumo:
Pumped storage hydro plants (PSHP) can provide adequate energy storage and frequency regulation capacities in isolated power systems having significant renewable energy resources. Due to its high wind and solar potential, several plans have been developed for La Palma Island in the Canary archipelago, aimed at increasing the penetration of these energy sources. In this paper, the performance of the frequency control of La Palma power system is assessed, when the demand is supplied by the available wind and solar generation with the support of a PSHP which has been predesigned for this purpose. The frequency regulation is provided exclusively by the PSHP. Due to topographic and environmental constraints, this plant has a long tail-race tunnel without a surge tank. In this configuration, the effects of pressure waves cannot be neglected and, therefore, usual recommendations for PID governor tuning provide poor performance. A PI governor tuning criterion is proposed for the hydro plant and compared with other criteria according to several performance indices. Several scenarios considering solar and wind energy penetration have been simulated to check the plant response using the proposed criterion. This tuning of the PI governor maintains La Palma system frequency within grid code requirements.
Resumo:
El trabajo realizado en la presente tesis doctoral se debe considerar parte del proyecto UPMSat-2, que se enmarca dentro del ámbito de la tecnología aeroespacial. El UPMSat-2 es un microsatélite (de bajo coste y pequeño tamaño) diseñado, construido, probado e integrado por la Universidad Politécnica de Madrid (España), para fines de demostración tecnológica y educación. El objetivo de la presente tesis doctoral es presentar nuevos modelos analíticos para estudiar la interdependencia energética entre los subsistemas de potencia y de control de actitud de un satélite. En primer lugar, se estudia la simulación del subsistema de potencia de un microsatélite, prestando especial atención a la simulación de la fuente de potencia, esto es, los paneles solares. En la tesis se presentan métodos sencillos pero precisos para simular la producción de energía de los paneles en condiciones ambientales variables a través de su circuito equivalente. Los métodos propuestos para el cálculo de los parámetros del circuito equivalente son explícitos (o al menos, con las variables desacopladas), no iterativos y directos; no se necesitan iteraciones o valores iniciales para calcular los parámetros. La precisión de este método se prueba y se compara con métodos similares de la literatura disponible, demostrando una precisión similar para mayor simplicidad. En segundo lugar, se presenta la simulación del subsistema de control de actitud de un microsatélite, prestando especial atención a la nueva ley de control propuesta. La tesis presenta un nuevo tipo de control magnético es aplicable a la órbita baja terrestre (LEO). La ley de control propuesta es capaz de ajustar la velocidad de rotación del satélite alrededor de su eje principal de inercia máximo o mínimo. Además, en el caso de órbitas de alta inclinación, la ley de control favorece la alineación del eje de rotación con la dirección normal al plano orbital. El algoritmo de control propuesto es simple, sólo se requieren magnetopares como actuadores; sólo se requieren magnetómetros como sensores; no hace falta estimar la velocidad angular; no incluye un modelo de campo magnético de la Tierra; no tiene por qué ser externamente activado con información sobre las características orbitales y permite el rearme automático después de un apagado total del subsistema de control de actitud. La viabilidad teórica de la citada ley de control se demuestra a través de análisis de Monte Carlo. Por último, en términos de producción de energía, se demuestra que la actitud propuesto (en eje principal perpendicular al plano de la órbita, y el satélite que gira alrededor de ella con una velocidad controlada) es muy adecuado para la misión UPMSat-2, ya que permite una área superior de los paneles apuntando hacia el sol cuando se compara con otras actitudes estudiadas. En comparación con el control de actitud anterior propuesto para el UPMSat-2 resulta en un incremento de 25% en la potencia disponible. Además, la actitud propuesto mostró mejoras significativas, en comparación con otros, en términos de control térmico, como la tasa de rotación angular por satélite puede seleccionarse para conseguir una homogeneización de la temperatura más alta que apunta satélite y la antena. ABSTRACT The work carried out in the present doctoral dissertation should be considered part of the UPMSat-2 project, falling within the scope of the aerospace technology. The UPMSat-2 is a microsatellite (low cost and small size) designed, constructed integrated and tested for educational and technology demonstration purposes at the Universidad Politécnica de Madrid (Spain). The aim of the present doctoral dissertation is to present new analytical models to study the energy interdependence between the power and the attitude control subsystems of a satellite. First, the simulation of the power subsystem of a microsatellite is studied, paying particular attention to the simulation of the power supply, i.e. the solar panels. Simple but accurate methods for simulate the power production under variable ambient conditions using its equivalent circuit are presented. The proposed methods for calculate the equivalent circuit parameters are explicit (or at least, with decoupled variables), non-iterative and straight forward; no iterations or initial values for the parameters are needed. The accuracy of this method is tested and compared with similar methods from the available literature demonstrating similar precision but higher simplicity. Second, the simulation of the control subsystem of a microsatellite is presented, paying particular attention to the new control law proposed. A new type of magnetic control applied to Low Earth Orbit (LEO) satellites has been presented. The proposed control law is able to set the satellite rotation speed around its maximum or minimum inertia principal axis. Besides, the proposed control law favors the alignment of this axis with the normal direction to the orbital plane for high inclination orbits. The proposed control algorithm is simples, only magnetorquers are required as actuators; only magnetometers are required as sensors; no estimation of the angular velocity is needed; it does not include an in-orbit Earth magnetic field model; it does not need to be externally activated with information about the orbital characteristics and it allows automatic reset after a total shutdown of attitude control subsystem. The theoretical viability of the control law is demonstrated through Monte Carlo analysis. Finally, in terms of power production, it is demonstrated that the proposed attitude (on principal axis perpendicular to the orbit plane, and the satellite rotating around it with a controlled rate) is quite suitable for the UPMSat-2 mission, as it allows a higher area of the panels pointing towards the sun when compared to other studied attitudes. Compared with the previous attitude control proposed for the UPMSat-2 it results in a 25% increment in available power. Besides, the proposed attitude showed significant improvements, when compared to others, in terms of thermal control, as the satellite angular rotation rate can be selected to achieve a higher temperature homogenization of the satellite and antenna pointing.
Resumo:
Climate change conference was hold in Copenhagen in 2009, global warming became the worldwide focus once again. China as a developing country has paid more attention for this environmental problem. In China, a large part of carbon dioxide is emitted to the atmosphere from combustion of fossil fuels in power plants. How to control emission of the greenhouse gas into atmosphere is becoming an urgent concern. Among numerous methods, CO2 capture is the hope to limit the amount of CO2 emitted into the air. The well-established method for CO2 capture is to remove CO2 by absorption into solutions in conventional equipment. Absorbents used for CO2 and H2S capture are important choice for CO2 capture technology. It is related to the cost and efficiency of plant directly and is essential to investigate the proposed CO2 and H2S absorbents.
Resumo:
The work reported here shows a direct experimental comparison of the sensitivities of AlN solidly mounted resonators (SMR)-based biosensors fabricated with standard metal electrodes and with carbon nanotube electrodes. SMRs resonating at frequencies around 1.75 GHz have been fabricated, some devices using a thin film of multi-wall carbon nanotubes (CNTs) as the top electrode material and some identical devices using a chromium/gold electrode. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode material exhibited higher frequency change for a given load due to the higher active surface area of a thin film of interconnecting CNTs compared to that of a metal thin film electrode and hence exhibited greater mass loading sensitivity. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is viable and worthwhile.
Resumo:
This paper reports the simultaneous fabrication of Receive and Transmit Bulk Acoustic Wave filters for the WCDMA standard on the same die. Both filters are based on Solidly Mounted Resonators using a common Bragg mirror, but with each having a specific piezoelectric film thickness. Electrical measurements reveal that the process steps required to provide the two different piezoelectric film thicknesses on the same die does not impact the electrical performances of resonators and filters and that this approach could thus be generalised to more than two filters.
Resumo:
Strong high-order Rayleigh or Sezawa modes, in addition to the fundamental Rayleigh mode, have been observed in ZnO/GaAs(001) systems along the [110] propagation direction of GaAs. The dispersion of the different acoustic waves has been calculated and compared to the experimental data. The bandwidth and impedance matching characteristics of the multimode SAW delay lines operating at high frequencies (2.5-3.5 GHz regime) have been investigated.
Resumo:
El presente trabajo se enmarca en el ámbito de la eficiencia energética y contempla la gestión del consumo eléctrico en hogares. Concretamente, para este proyecto fin de grado se propone el desarrollo de un sistema informático que permita el análisis y monitorización del consumo eléctrico y optimización en la contratación del suministro eléctrico en el hogar. El sistema desarrollado permite la monitorización del consumo eléctrico, expresado en kilovatios-hora (kWh), y la monitorización del coste real de dicho consumo, expresado en euros, en función del tipo de tarifa que se tenga contratada en la modalidad del PVPC1 (Precio Voluntario para el Pequeño Consumidor). También se ha desarrollado una interfaz web a través de la cual el usuario tiene acceso a la información y datos del sistema. En dicha web se muestran gráficas de consumo, potencia, voltaje, corriente y coste de la energía por días. Además, se ha dotado al sistema de un generador de alertas que notifica al usuario, vía web y vía correo electrónico, cuando el consumo sobrepasa los límites fijados por él mismo. El usuario, por tanto, podrá definir los valores de alerta de sobreconsumo y visualizar tanto un histórico de las alertas generadas en el pasado como las alertas activas en ese momento. Las alertas se muestran en la gráfica correspondiente dentro de la aplicación web. Por último, se dispone de la opción de exportar las gráficas que son visualizadas en la aplicación web en formato PNG, JPEG, PDF y SVG, además de la posibilidad de imprimirla.---ABSTRACT---This project belongs to the Energy Efficiency field and is aimed at home energy management. Specifically, for this thesis the development of a computer system that allows monitoring and analysis of energy consumption and contracted power optimization is proposed. The developed system allows energy consumption management within households (expressed in kilowatts per hour, kWh) and real cost monitoring (in euros) according to the contract tariff. A web interface has been developed in order to provide the user with power consumption information and control energy tools. In this web application, electric consumption, power, voltage, current and energy cost by day are shown. Besides, an alert generation system has been implemented so that the user can define maximum power consumption values and be informed through email or web when these values are exceeded. The user will be able to check older power alerts as well as the currently active ones. These alerts are shown in a specific graph within the web application. Finally, the user generated graphs can be exported from the web using PNG, JPEG, PDF or SVG image formats as well as be printed from the web.
Resumo:
This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended as high impedance films for the acoustic isolation of bulk acoustic wave devices operating in the GHz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed DC powers and substrate bias. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is obtained after estimating the mass density by X-ray reflectometry measurements and the longitudinal acoustic velocity by analyzing the longitudinal λ/2 resonance induced in a tantalum oxide film inserted between an acoustic reflector and an AlN-based resonator. A second measurement of the sound velocity is achieved through picosecond acoustic spectroscopy.
Resumo:
Cellular ferroelectrets exhibit interesting electromechanical- acoustical characteristics. Their recent appearance and remarkable properties open up new possibilities for the design and development of ultrasonic transducers. In particular, the feasibility of fabricating ultrasonic vortex generators using ferroelectret films is demonstrated in this work. To this end, a transducer prototype was built by gluing the material onto a tangential-helical surface (outer diameter: 40 mm, pitch: 3.45 mm). Experimental results agree well with the theoretical estimation of the pressure and phase of the acoustic field in the near field and far field, which corroborates the potential of ferroelectrets to customize special acoustic fields. Furthermore, the proposed fabrication procedure is inexpensive and represents a new alternative for exploring and analyzing the special characteristics of acoustical helical wavefronts
Resumo:
In the last years, RF power amplifiers are taking advantage of the switched dc-dc converters to use them in several architectures that may improve the efficiency of the amplifier, keeping a good linearity. The use of linearization techniques such as Envelope Elimination and Restoration(EER) and Envelope Tracking (ET) requires a very fast dc-dc power converter to provide variable voltage supply to the power amplifier but theoretically the efficiency can be much higher than using the classical amplifiers belonging to classes A, B or AB. The purpose of this paper is to analyze the state of the art of the power converters used as envelope amplifiers in this application. The power topologies will be explored and several important parameters such as efficiency, bandwidth will be discussed.
Resumo:
Switching of a signal beam by another control beam at different wavelength is demonstrated experimentally using the optical bistability occurring in a 1.55 mm-distributed feedback semiconductor optical amplifier (DFBSOA) working in reflection. Counterclockwise (S-shaped) and reverse (clockwise) bistability are observed in the output of the control and the signal beam respectively, as the power of the input control signal is increased. With this technique an optical signal can be set in either of the optical input wavelengths by appropriate choice of the powers of the input signals. The switching properties of the DFBSOA are studied experimentally as the applied bias current is increased from below to above threshold and for different levels of optical power in the signal beam and different wavelength detunings between both input signals. Higher on-off extinction ratios, wider bistable loops and lower input power requirements for switching are obtained when the DFBSOA is operated slightly above its threshold value.
Resumo:
A 3-year Project started on November 1 2010, financed by the European Commision within the FP-7 Space Program, and aimed at developing an efficient de-orbit system that could be carried on board by future spacecraft launched into LEO, will be presented. The operational system will deploy a thin uninsulated tape-tether to collect electrons as a giant Langmuir probe, using no propellant/no power supply, and generating power on board. This project will involve free-fall tests, and laboratory hypervelocity-impact and tether-current tests, and design/Manufacturing of subsystems: interface elements, electric control and driving module, electron-ejecting plasma contactor, tether-deployment mechanism/end-mass, and tape samples. Preliminary results to be presented involve: i) devising criteria for sizing the three disparate tape dimensions, affecting mass, resistance, current-collection, magnetic self-field, and survivability against debris itself; ii) assessing the dynamical relevance of tether parameters in implementing control laws to limit oscillations in /off the orbital plane, where passive stability may be marginal; iii) deriving a law for bare-tape current from numerical simulations and chamber tests, taking into account ambient magnetic field, ion ram motion, and adiabatic electron trapping; iv) determining requirements on a year-dormant hollow cathode under long times/broad emission-range operation, and trading-off against use of electron thermal emission; v) determining requirements on magnetic components and power semiconductors for a control module that faces high voltage/power operation under mass/volume limitations; vi) assessing strategies to passively deploy a wide conductive tape that needs no retrieval, while avoiding jamming and ending at minimum libration; vii) evaluating the tape structure as regards conductive and dielectric materials, both lengthwise and in its cross-section, in particular to prevent arcing in triple-point junctions.
Resumo:
After a criticism on today’s model for electrical noise in resistors, we pass to use a Quantum-compliant model based on the discreteness of electrical charge in a complex Admittance. From this new model we show that carrier drift viewed as charged particle motion in response to an electric field is unlike to occur in bulk regions of Solid-State devices where carriers react as dipoles against this field. The absence of the shot noise that charges drifting in resistors should produce and the evolution of the Phase Noise with the active power existing in the resonators of L-C oscillators, are two effects added in proof for this conduction model without carrier drift where the resistance of any two-terminal device becomes discrete and has a minimum value per carrier that is the Quantum resistance RK/(2pi)
Resumo:
GaN based high electron mobility transistors have draw great attention due to its potential in high temperature, high power and high frequency applications [1, 2]. However, significant gate leakage current is still one of the issues which need to be solved to improve the performance and reliability of the devices [3]. Several research groups have contributed to solve this problem by using metal–oxide–semiconductor HEMTs (MOSHEMTs), with a thin dielectric layer, such as SiO2 [4], Al2O3 [5], HfO2 [6] and Gd2O3 [7] between the gate and the barrier layer on AlGaN/GaN heterostructures. Gd2O3 has shown low interfacial density of states(Dit) with GaN and a high dielectric constant and low electrical leakage currents [8], thus is considered as a promising candidate for the gate dielectrics on GaN. MOS-HEMTs using Gd2O3 grown by electron-beam heating [7] or molecular beam epitaxy (MBE) [8] on GaN or AlGan/GaN structure have been investigated, but further research is still needed in Gd2O3 based AlGaN/GaN MOSHEMTs.