7 resultados para acoustic impedance

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended as high impedance films for the acoustic isolation of bulk acoustic wave devices operating in the GHz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed DC powers and substrate bias. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is obtained after estimating the mass density by X-ray reflectometry measurements and the longitudinal acoustic velocity by analyzing the longitudinal λ/2 resonance induced in a tantalum oxide film inserted between an acoustic reflector and an AlN-based resonator. A second measurement of the sound velocity is achieved through picosecond acoustic spectroscopy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work describes the performance of AlN-based bulk acoustic wave resonators built on top of insulating acoustic reflectors and operating at around 8 GHz. The acoustic reflectors are composed of alternate layers of amorphous Ta2O5and SiO2 deposited at room temperature by pulsed-DC reactive sputtering in Ar/O2 atmospheres. SiO2 layers have a porous structure that provides a low acoustic impedance of only 9.5 MRayl. Ta2O5 films exhibit an acoustic impedance of around 39.5 MRayl that was assessed by the picoseconds acoustic technique These values allow to design acoustic mirrors with transmission coefficients in the centre of the band lower than -40 dB (99.998 % of reflectance) with only seven layers. The resonators were fabricated by depositing a very thin AlN film onto an iridium bottom electrode 180 nm-thick and by using Ir or Mo layers as top electrode. Resonators with effective electromechanical coupling factors of 5.7% and quality factors at the antiresonant frequency around 600 are achieved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis investigates the acoustic properties of microperforated panels as an alternative to passive noise control. The first chapters are devoted to the review of analytical models to obtain the acoustic impedance and absorption coefficient of perforated panels. The use of panels perforated with circular holes or with slits is discussed. The theoretical models are presented and some modifications are proposed to improve the modeling of the physical phenomena occurring at the perforations of the panels. The absorption band is widened through the use of multiple layer microperforated panels and/or the combination of a millimetric panel with a porous layer that can be a fibrous material or a nylon mesh. A commercial micrometric mesh downstream a millimetric panel is proposed as a very efficient and low cost solution for controlling noise in reduced spaces. The simulated annealing algorithm is used in order to optimize the panel construction to provide a maximum of absorption in a determined wide band frequency range. Experiments are carried out at normal sound incidence and plane waves. One example is shown for a double layer microperforated panel subjected to grazing flow. A good agreement is achieved between the theory and the experiments. RESUMEN En esta tesis se investigan las propiedades acústicas de paneles micro perforados como una alternativa al control pasivo del ruido. Los primeros capítulos están dedicados a la revisión de los modelos de análisis para obtener la impedancia acústica y el coeficiente de absorción de los paneles perforados. El uso de paneles perforados con agujeros circulares o con ranuras es discutido. Se presentan diferentes modelos y se proponen algunas modificaciones para mejorar la modelización de los fenómenos físicos que ocurren en las perforaciones. La banda de absorción se ensancha a través del uso de capas múltiples de paneles micro perforados y/o la combinación de un panel de perforaciones milimétricas combinado con una capa porosa que puede ser un material fibroso o una malla de nylon. Se propone el uso de una malla micrométrica detrás de un panel milimétrico como una solución económica y eficiente para el control del ruido en espacios reducidos. El algoritmo de recocido simulado se utiliza con el fin de optimizar la construcción de paneles micro perforados para proporcionar un máximo de absorción en una banda determinada frecuencias. Los experimentos se llevan a cabo en la incidencia normal de sonido y ondas planas. Se muestra un ejemplo de panel micro perforado de doble capa sometido a flujo rasante. Se consigue un buen acuerdo entre la teoría y los experimentos.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article describes the simulation and characterization of an ultrasonic transducer using a new material called Rexolite to be used as a matching element. This transducer was simulated using a commercial piezoelectric ceramic PIC255 at 8 MHz. Rexolite, the new material, presents an excellent acoustic matching, specially in terms of the acoustic impedance of water. Finite elements simulations were used in this work. Rexolite was considered as a suitable material in the construction of the transducer due to its malleability and acoustic properties, to validate the simulations a prototype transducer was constructed. Experimental measurements were used to determine the resonance frequency of the prototype transducer. Simulated and experimental results were very similar showing that Rexolite may be an excellent matching, particularly for medical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El diagnóstico y detección temprana de enfermedades son clave para reducir la tasa de mortalidad, las hospitalizaciones de larga duración y el desaprovechamiento de recursos. En los últimos años se ha impulsado, mediante un aumento de la financiación, el desarrollo de nuevos biosensores de bajo coste capaces de detectar y cuantificar cantidades muy pequeñas de especies biológicas de una forma barata y sencilla. El trabajo presentado en esta Tesis Doctoral describe la investigación llevada a cabo en el desarrollo de sensores gravimétricos basados en resonadores de ondas acústicas de volumen (BAW) de estructura maciza (SMR). Los dispositivos emplean películas delgadas de A1N como material piezoeléctrico y operan en modo de cizalladura, para así poder detectar especies biológicas en medio líquido. El principio de funcionamiento de estos sensores se basa en la variación que experimenta la frecuencia de resonancia al quedar una pequeña masa adherida a su superficie. Necesitan operar en modo de cizalladura para que su resonancia no se atenúe al trabajar en medio líquido, así como ofrecer una superficie capaz de ser funcionalizada específicamente para la especie biológica a detectar. El reto planteado en esta tesis requiere un acercamiento pluridisciplinar al problema que incluye el estudio de los diferentes materiales que constituyen la estructura multicapa que forma un SMR, el diseño y fabricación del dispositivo y del sistema de fluídica, la funcionalización bioquímica de la superficie del sensor, la demostración de la capacidad de detección de especies biológicas y finalmente el diseño y fabricación de la electrónica asociada para la detección de la señal eléctrica. Todas esas tareas han sido abordadas en las distintas etapas del desarrollo de esta tesis y las contribuciones más relevantes se describen en el documento. En el campo de desarrollo de los materiales, se propone un proceso en dos etapas para la pulverización reactiva de capas de A1N que contengan microcristales inclinados capaces de excitar el modo de cizalladura. Se caracteriza la velocidad acústica del modo de cizalladura en todos los materiales que componen la estructura, con el fin de poder obtener un diseño más adecuado del reflector acústico. Se propone un nuevo tipo de material aislante de alta impedancia acústica consistente en capas de W03 pulverizadas que presenta ciertas ventajas tecnológicas frente a las capas convencionales de Ta205. Respecto del diseño del transductor, se estudia la influencia que tienen los con tactos eléctricos extendidos del resonador necesarios para poder adaptar el sistema de fluídica a la estructura. Los resultados indican que es necesario trabajar sobre sustratos aislantes (tanto el soporte como el espejo acústico) para evitar efectos parásitos asociados al uso de capas metálicas bajo los electrodos del resonador que dañan su resonancia. Se analiza la influencia de las diferentes capas del dispositivo en el coeficiente de temperatura de la frecuencia (TCF) del resonador llegando a la conclusión de que las dos últimas capas del reflector acústico afectan significativamente al TCF del SMR, pudiendo reducirse ajusfando adecuadamente sus espesores. De acuerdo con los resultados de estos estudios, se han diseñado finalmente resonadores SMR operando a f .3 GHz en modo de cizalladura, con un área activa de 65000 /xm2, contactos eléctricos que se extienden f .7 mm y factores de calidad en líquido de f 50. Las extensiones eléctricas permiten adaptar el resonador a un sistema de fluídica de metacrilato. Para la detección de especies biológicas se realiza un montaje experimental que permite circular 800 ¡A por la superficie del sensor a través de un circuito cerrado que trabaja a volumen constante. La circulación de soluciones iónicas sobre el sensor descubierto pone de manifiesto que las altas frecuencias de operación previenen los cortocircuitos y por tanto el aislamiento de los electrodos es prescindible. Se desarrolla un protocolo ad-hoc de funcionalización basado en el proceso estándar APTESGlutaraldehído. Se proponen dos alternativas novedosas para la funcionalización de las áreas activas del sensor basadas en el uso de capas de oxidación de Ir02 y su activación a través de un plasma de oxígeno que no daña al dispositivo. Ambos procesos contribuyen a simplificar notablemente la funcionalización de los sensores gravimétricos. Se utilizan anticuerpos y aptámeros como receptores para detectar trombina, anticuerpo monoclonal IgG de ratón y bacteria sonicadas. Una calibración preliminar del sensor con depósitos de capas finas de Si02 de densidad y espesor conocidos permite obtener una sensibilidad de 1800 kHz/pg-cm2 y un límite de detección of 4.2 pg. Finalmente se propone el prototipo de un circuito electrónico de excitación y lectura de bajo coste diseñado empleando teoría de circuitos de microondas. Aunque su diseño y funcionamiento admite mejoras, constituye la última etapa de un sistema completo de bajo coste para el diagnóstico de especies biológicas basado en resonadores SMR de A1N. ABSTRACT Early diagnosis and detection of diseases are essential for reducing mortality rate and preventing long-term hospitalization and waste of resources. These requirements have boosted the efforts and funding on the research of accurate and reliable means for detection and quantification of biological species, also known as biosensors. The work presented in this thesis describes the development and fabrication of gravimetric biosensors based on piezoelectric AlN bulk acoustic wave (BAW) solidly mounted resonators (SMRs) for detection of biological species in liquid media. These type of devices base their sensing principles in the variation that their resonant frequency suffers when a mass is attached to their surface. They need to operate in the shear mode to maintain a strong resonance in liquid and an adequate functionalisation of their sensing area to guarantee that only the targeted molecules cause the shift. The challenges that need to be overcome to achieve piezoelectric BAW resonators for high sensitivity detection in fluids require a multidisciplinary approach, that include the study of the materials involved, the design of the device and the fluidic system, the biochemical functionalisation of the active area, the experimental proof-of-concept with different target species and the design of an electronic readout circuit. All this tasks have been tackled at different stages of the thesis and the relevant contributions are described in the document. In the field of materials, a two-stage sputtering deposition process has been developed to obtain good-quality AlN films with uniformly tilted grains required to excite the shear mode. The shear acoustic velocities of the materials composing the acoustic reflector have been accurately studied to ensure an optimum design of the reflector stack. WO3 sputtered films have been proposed as high acoustic impedance material for insulating acoustic reflectors. They display several technological advantages for the processing of the resonators. Regarding the design, a study of the influence of the electrical extensions necessary to fit a fluidic system on the performance of the devices has been performed. The results indicate that high resistivity substrates and insulating reflectors are necessary to avoid the hindering of the resonance due to the parasitic effects induced by the extensions. The influence of the different layers of the stack on the resultant TCF of the SMRs has also been investigated. The two layers of the reflector closer to the piezoelectric layer have a significant influence on the TCF, which can be reduced by modifying their thicknesses accordingly. The data provided by these studies has led to the final design of the devices, which operate at 1.3 GHz in the shear mode and display an active area of 65000 /xm2 and electrical extensions of 1.7 mm while keeping a Qahear=150 in liquid. The extensions enable to fit a custom-made fluidic system made of methacrylate. To perform the biosensing experiments, an experimental setup with a liquid closed circuit operating at constant flow has been developed. Buffers of ionic characteristics have been tested on non-isolated devices, revealing that high operation frequencies prevent the risk of short circuit. An ad-hoc functionalisation protocol based on the standard APTES - Glutaraldehyde process has been developed. It includes two new processes that simplify the fabrication of the transducers: the use of IrO2 as oxidation layer and its functionalisation through an O2 plasma treatment that does not damage the resonators. Both antibodies and aptamers are used as receptors. In liquid sensing proof-of-concept experiments with thrombin, IgG mouse monoclonal antibody and sonicated bacteria have been displayed. A preliminary calibration of the devices using SiO2 layers reveals a sensitivity of 1800 kHz/pg-cm2 and a limit of detection of 4.2 pg. Finally, a first prototype of a low-cost electronic readout circuit designed using a standard microwave approach has been developed. Although its performance can be significantly improved, it is an effective first approach to the final stage of a portable low-cost diagnostic system based on shear mode AlN SMRs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impulse response measurements are carried out in laboratory facilities at Ecophon, Sweden, simulating a typical classroom with varying suspended ceilings and furniture arrangements. The aim of these measurements is to build a reliable database of acoustical parameters in order to have enough data to validate the new acoustical simulation tool which is under development at Danmarks Tekniske Universitet, Denmark. The different classroom configurations are also simulated using ODEON Room Acoustics software and are compared with the measurements. The resulting information is essential for the development of the acoustical simulation tool because it will enable the elimination of prediction errors, especially those below the Schroeder frequency. The surface impedance of the materials used during the experiments is measured in a Kundt’s tube at DTU, in order to characterize them as accurately as possible at the time of incorporation into the model. A brief study about porous materials frequently used in classrooms is presented. Wide diferences are found between methods of measuring absorption coefficients and local or extended assumptions. RESUMEN. Mediciones de Respuesta al Impulso son llevadas a cabo en las instalaciones con que cuenta la empresa Ecophon en su sede central de Hyllinge, Suecia. En una de sus salas, se recrean diferentes configuraciones típicas de aula, variando la altura y composición de los techos, colocando paneles absorbentes de pared e incluyendo diferentes elementos mobiliario como pupitres y sillas. Tres diferentes materiales absorbentes porosos de 15, 20 y 50 mm de espesor, son utilizados como techos suspendidos así como uno de 40 mm es utilizado en forma de paneles. Todas las medidas son realizadas de acuerdo al estándar ISO 3382, utilizando 12 combinaciones de fuente sonora y micrófono para cada configuración, así como respetando las distancias entre ellos establecidas en la norma. El objetivo de toda esta serie de medidas es crear una base de datos de parámetros acústicos tales como tiempo de reverberación, índice de claridad o índice de inteligibilidad medidos bajo diferentes configuraciones con el objeto de que éstos sirvan de referencia para la validación de una nueva herramienta de simulación acústica llamada PARISM que está siendo desarrollada en este momento en la Danmarks Tekniske Universitet de Copenhague. Esta herramienta tendrá en cuenta la fase, tanto en propagación como en reflexión, así como el comportamiento angulodependiente de los materiales y la difusión producida por las superficies. Las diferentes configuraciones de aula recreadas en Hyllinge, son simuladas también utilizando el software de simulación acústica ODEON con el fin de establecer comparaciones entre medidas y simulaciones para discutir la validez de estas ultimas. La información resultante es esencial para el desarrollo de la nueva herramienta de simulación, especialmente los resultados por debajo de la frecuencia de corte de Schroeder, donde ODEON no produce predicciones precisas debido a que no tiene en cuenta la fase ni en propagación ni en reflexión. La impedancia de superficie de los materiales utilizados en los experimentos, todos ellos fabricados por la propia empresa Ecophon, es medida utilizando un tubo de Kundt. De este modo, los coeficientes de absorción de incidencia aleatoria son calculados e incorporados a las simulaciones. Además, estos coeficientes también son estimados mediante el modelo empírico de Miki, con el fin de ser comparados con los obtenidos mediante otros métodos. Un breve estudio comparativo entre coeficientes de absorción obtenidos por diversos métodos y el efecto producido por los materiales absorbentes sobre los tiempos de reverberación es realizado. Grandes diferencias son encontradas, especialmente entre los métodos de tubo de impedancia y cámara reverberante. La elección de reacción local o extendida a la hora de estimar los coeficientes también produce grandes diferencias entre los resultados. Pese a que la opción de absorción angular es activada en todas las simulaciones realizadas con ODEON para todos los materiales, los resultados son mucho más imprecisos de lo esperado a la hora de compararlos con los valores extraidos de las medidas de Respuesta al Impulso. En salas como las recreadas, donde una superficie es mucho más absorbente que las demás, las ondas sonoras tienden a incidir en la superficie altamente absorbente desde ángulos de incidencia muy pequeños. En este rango de ángulos de incidencia, las absorciones que presentan los materiales absorbentes porosos estudiados son muy pequeñas, pese a que sus valores de coeficientes de absorción de incidencia aleatoria son altos. Dado que como descriptor de las superficies en ODEON se utiliza el coeficiente de absorción de incidencia aleatoria, los tiempos de reverberación son siempre subestimados en las simulaciones, incluso con la opción de absorción angular activada. Esto es debido a que el algoritmo que ejecuta esta opción, solo tiene en cuenta el tamaño y posición de las superficies, mientras que el comportamiento angulodependiente es diferente para cada material. Es importante destacar, que cuando la opción es activada, los tiempos simulados se asemejan más a los medidos, por lo tanto esta característica sí produce ciertas mejoras pese a no modelar la angulodependencia perfectamente. Por otra parte, ODEON tampoco tiene en cuenta el fenómeno de difracción, ni acepta longitudes de superficie menores de una longitud de onda a frecuencias medias (30 cm) por lo que en las configuraciones que incluyen absorbentes de pared, los cuales presentan un grosor de 4 cm que no puede ser modelado, los tiempos de reverberación son siempre sobreestimados. Para evitar esta sobreestimación, diferentes métodos de correción son analizados. Todas estas deficiencias encontradas en el software ODEON, resaltan la necesidad de desarrollar cuanto antes la herramienta de simulación acústica PARISM, la cual será capaz de predecir el comportamiento del campo sonoro de manera precisa en este tipo de salas, sin incrementar excesivamente el tiempo de cálculo. En cuanto a los parámetros extraidos de las mediciones de Respuesta al Impulso, bajo ninguna de las configuraciones recreadas los tiempos de reverberación cumplen con las condiciones establecidas por la regulación danesa en materia de edificación. Es importante destacar que los experimentos son llevados a cabo en un edificio construido para uso industrial, en el que, pese a contar con un buen aislamiento acústico, los niveles de ruido pueden ser superiores a los existentes dentro del edificio donde finalmente se ubique el aula. Además, aunque algunos elementos de mobiliario como pupitres y sillas son incluidos, en una configuración real de aula normalmente aparecerían algunos otros como taquillas, que no solo presentarían una mayor absorción, sino que también dispersarían las ondas incidentes produciendo un mejor funcionamiento del techo absorbente. Esto es debido a que las ondas incidirían en el techo desde una mayor variedad de ángulos, y no solo desde ángulos cercanos a la dirección paralela al techo, para los cuales los materiales presentan absorciones muy bajas o casi nulas. En relación a los otros parámetros como índice de claridad o índice de inteligibilidad extraidos de las medidas, no se han podido extraer conclusiones válidas dada la falta de regulación existente. Sin embargo, el efecto que produce sobre ellos la inclusión de techos, paneles de pared y mobiliario sí es analizada, concluyendo que, como era de esperar, los mejores resultados son obtenidos cuando todos los elementos están presentes en la sala en el mismo momento.