24 resultados para ability to suspect phishing emails
em Universidad Politécnica de Madrid
Resumo:
This Doctoral Thesis entitled Contribution to the analysis, design and assessment of compact antenna test ranges at millimeter wavelengths aims to deepen the knowledge of a particular antenna measurement system: the compact range, operating in the frequency bands of millimeter wavelengths. The thesis has been developed at Radiation Group (GR), an antenna laboratory which belongs to the Signals, Systems and Radiocommunications department (SSR), from Technical University of Madrid (UPM). The Radiation Group owns an extensive experience on antenna measurements, running at present four facilities which operate in different configurations: Gregorian compact antenna test range, spherical near field, planar near field and semianechoic arch system. The research work performed in line with this thesis contributes the knowledge of the first measurement configuration at higher frequencies, beyond the microwaves region where Radiation Group features customer-level performance. To reach this high level purpose, a set of scientific tasks were sequentially carried out. Those are succinctly described in the subsequent paragraphs. A first step dealed with the State of Art review. The study of scientific literature dealed with the analysis of measurement practices in compact antenna test ranges in addition with the particularities of millimeter wavelength technologies. Joint study of both fields of knowledge converged, when this measurement facilities are of interest, in a series of technological challenges which become serious bottlenecks at different stages: analysis, design and assessment. Thirdly after the overview study, focus was set on Electromagnetic analysis algorithms. These formulations allow to approach certain electromagnetic features of interest, such as field distribution phase or stray signal analysis of particular structures when they interact with electromagnetic waves sources. Properly operated, a CATR facility features electromagnetic waves collimation optics which are large, in terms of wavelengths. Accordingly, the electromagnetic analysis tasks introduce an extense number of mathematic unknowns which grow with frequency, following different polynomic order laws depending on the used algorithmia. In particular, the optics configuration which was of our interest consisted on the reflection type serrated edge collimator. The analysis of these devices requires a flexible handling of almost arbitrary scattering geometries, becoming this flexibility the nucleus of the algorithmia’s ability to perform the subsequent design tasks. This thesis’ contribution to this field of knowledge consisted on reaching a formulation which was powerful at the same time when dealing with various analysis geometries and computationally speaking. Two algorithmia were developed. While based on the same principle of hybridization, they reached different order Physics performance at the cost of the computational efficiency. Inter-comparison of their CATR design capabilities was performed, reaching both qualitative as well as quantitative conclusions on their scope. In third place, interest was shifted from analysis - design tasks towards range assessment. Millimetre wavelengths imply strict mechanical tolerances and fine setup adjustment. In addition, the large number of unknowns issue already faced in the analysis stage appears as well in the on chamber field probing stage. Natural decrease of dynamic range available by semiconductor millimeter waves sources requires in addition larger integration times at each probing point. These peculiarities increase exponentially the difficulty of performing assessment processes in CATR facilities beyond microwaves. The bottleneck becomes so tight that it compromises the range characterization beyond a certain limit frequency which typically lies on the lowest segment of millimeter wavelength frequencies. However the value of range assessment moves, on the contrary, towards the highest segment. This thesis contributes this technological scenario developing quiet zone probing techniques which achieves substantial data reduction ratii. Collaterally, it increases the robustness of the results to noise, which is a virtual rise of the setup’s available dynamic range. In fourth place, the environmental sensitivity of millimeter wavelengths issue was approached. It is well known the drifts of electromagnetic experiments due to the dependance of the re sults with respect to the surrounding environment. This feature relegates many industrial practices of microwave frequencies to the experimental stage, at millimeter wavelengths. In particular, evolution of the atmosphere within acceptable conditioning bounds redounds in drift phenomena which completely mask the experimental results. The contribution of this thesis on this aspect consists on modeling electrically the indoor atmosphere existing in a CATR, as a function of environmental variables which affect the range’s performance. A simple model was developed, being able to handle high level phenomena, such as feed - probe phase drift as a function of low level magnitudes easy to be sampled: relative humidity and temperature. With this model, environmental compensation can be performed and chamber conditioning is automatically extended towards higher frequencies. Therefore, the purpose of this thesis is to go further into the knowledge of millimetre wavelengths involving compact antenna test ranges. This knowledge is dosified through the sequential stages of a CATR conception, form early low level electromagnetic analysis towards the assessment of an operative facility, stages for each one of which nowadays bottleneck phenomena exist and seriously compromise the antenna measurement practices at millimeter wavelengths.
Resumo:
Questions: Do Mediterranean riparian guilds show distinct responses to stream water declines? If observed,which are the most sensitive and resilient guilds and theirmost affected attributes? Location: Tie¿tar river below the Rosarito dam, central-western Spain. Methods: We identified riparian guilds based on key woody species features and species distribution within this Mediterranean river corridor, and evaluated similarity of their responses to long-term flow alteration (i.e. stream water declines since dam construction in 1959). Hierarchical cluster analysis was used to group surveyed vegetation bands according to species composition. The groups were designated as riparian guilds where each vegetation group comprising a guild: (1) contains species sharing similar features (using PCA); and (2) shares a similar environment (using DCA). Changes in several guild attributes (i.e. dominance and species composition, diversity and establishment patterns) during the regulated period were compared statistically. We used pre- and post-dam established vegetation bands identified based on old (1956) and modern (2006) aerial photographs and field measurements of woody species diameter. Results: Responses to flow alterations varied between guilds according to ecological requirements of their species. The ability to survive water stress (i.e. ?Xeric? guilds) and drag forces caused by floods (?Torrential? guilds) allowed certain pioneer shrub-dominated guilds (e.g. Flueggea tinctoria and Salix salviifolia) to spread on newly emerged surfaces downward to the main channel after flow alterations, although new shrubland had less species diversity than pre-dam shrubland. In contrast, new hydromorphological conditions following damming limited recruitment of native late-successional tree guilds sensitive to floods (to drag forces, inundation and anoxia; i.e. ?Slow-water? and ?Flood-sensitive?, respectively) and those with greater water requirements (i.e. ?Hydric?) (e.g. Alnus glutinosa and Celtis australis), although species diversity increased in this mature forest through co-existence of remaining riparian species and new arrival of upland species. Conclusions: Changes in several riparian attributes after flow alterations differed between guilds. Stream water declines after damming caused shifts in species-poor pioneer shrubland downwards to the watered channel, resulting in severe declines ofmaturenative forest.Understanding vegetation guild responses provides information about general trends in plant populations and assemblage structures expected to occur during river development and flow regulation, increasing our capacity to detect and synthesize complex flowalteration?riparian ecosystem response relationships, and anticipate irreversible impacts.
Resumo:
Supply chain management works to bring the supplier, the distributor, and the customer into one cohesive process. The Supply Chain Council defined supply chain as ‘Supply Chain: The flow and transformation of raw materials into products from suppliers through production and distribution facilities to the ultimate consumer., and then Sunil Chopra and Meindl, (2001) have define Supply chain management as ‘Supply Chain Management involves the flows between and among stages in a supply chain to maximize total profitability.’ After 1950, supply chain management got a boost with the production and manufacturing sector getting highest attention. The inventory became the responsibility of the marketing, accounting and production areas. Order processing was part of accounting and sales. Supply chain management became one of the most powerful engines of business transformation. It is the one area where operational efficiency can be gained. It reduces organizations costs and enhances customer service. With the liberalization of world trade, globalization, and emergence of the new markets, many organizations have customers and competitions throughout the world, either directly or indirectly. Business communities are aware that global competitiveness is the key to the success of a business. Competitiveness is ability to produce, distribute and provide products and services for the open market in competition with others. The supply chain, a critical link between supplier, producer and customer is emerged now as an essential business process and a strategic lever, potential value contributor a differentiator for the success of any business. Supply chain management is the management of all internal and external processes or functions to satisfy a customer’s order (from raw materials through conversion and manufacture through logistics delivery.). Goods-either in raw form or processed, whole sale or retailed distribution, business or technology services, in everyday life- in the business or household- directly or indirectly supply chain is ubiquitously associated in expanding socio-economic development. Supply chain growth competitive performance and supporting strong growth impulse at micro as well as micro economic levels. Keeping the India vision at the core of the objective, the role of supply chain is to take up social economic challenges, improve competitive advantages, develop strategies, built capabilities, enhance value propositions, adapt right technology, collaborate with stakeholders and deliver environmentally sustainable outcomes with minimum resources.
Resumo:
Nondeterminism and partially instantiated data structures give logic programming expressive power beyond that of functional programming. However, functional programming often provides convenient syntactic features, such as having a designated implicit output argument, which allow function cali nesting and sometimes results in more compact code. Functional programming also sometimes allows a more direct encoding of lazy evaluation, with its ability to deal with infinite data structures. We present a syntactic functional extensión, used in the Ciao system, which can be implemented in ISO-standard Prolog systems and covers function application, predefined evaluable functors, functional definitions, quoting, and lazy evaluation. The extensión is also composable with higher-order features and can be combined with other extensions to ISO-Prolog such as constraints. We also highlight the features of the Ciao system which help implementation and present some data on the overhead of using lazy evaluation with respect to eager evaluation.
Resumo:
We present a concurrent semantics (i.e. a semantics where concurrency is explicitely represented) for CC programs with atomic tells. This allows to derive concurrency, dependency, and nondeterminism information for such languages. The ability to treat failure information puts CLP programs also in the range of applicability of our semantics: although such programs are not concurrent, the concurrency information derived in the semantics may be interpreted as possible parallelism, thus allowing to safely parallelize those computation steps which appear to be concurrent in the net. Dually, the dependency information may also be interpreted as necessary sequentialization, thus possibly exploiting it to schedule CC programs. The fact that the semantical structure contains dependency information suggests a new tell operation, which checks for consistency only the constraints it depends on, achieving a reasonable trade-off between efficiency and atomicity.
Resumo:
Los arrays de ranuras son sistemas de antennas conocidos desde los años 40, principalmente destinados a formar parte de sistemas rádar de navíos de combate y grandes estaciones terrenas donde el tamaño y el peso no eran altamente restrictivos. Con el paso de los años y debido sobre todo a importantes avances en materiales y métodos de fabricación, el rango de aplicaciones de este tipo de sistemas radiantes creció en gran medida. Desde nuevas tecnologías biomédicas, sistemas anticolisión en automóviles y navegación en aviones, enlaces de comunicaciones de alta tasa binaria y corta distancia e incluso sistemas embarcados en satélites para la transmisión de señal de televisión. Dentro de esta familia de antennas, existen dos grupos que destacan por ser los más utilizados: las antennas de placas paralelas con las ranuras distribuidas de forma circular o espiral y las agrupaciones de arrays lineales construidos sobre guia de onda. Continuando con las tareas de investigación desarrolladas durante los últimos años en el Instituto de Tecnología de Tokyo y en el Grupo de Radiación de la Universidad Politécnica de Madrid, la totalidad de esta tesis se centra en este último grupo, aunque como se verá se separa en gran medida de las técnicas de diseño y metodologías convencionales. Los arrays de ranuras rectas y paralelas al eje de la guía rectangular que las alimenta son, sin ninguna duda, los modelos más empleados debido a la fiabilidad que presentan a altas frecuencias, su capacidad para gestionar grandes cantidades de potencia y la sencillez de su diseño y fabricación. Sin embargo, también presentan desventajas como estrecho ancho de banda en pérdidas de retorno y rápida degradación del diagrama de radiación con la frecuencia. Éstas son debidas a la naturaleza resonante de sus elementos radiantes: al perder la resonancia, el sistema global se desajusta y sus prestaciones degeneran. En arrays bidimensionales de slots rectos, el campo eléctrico queda polarizado sobre el plano transversal a las ranuras, correspondiéndose con el plano de altos lóbulos secundarios. Esta tesis tiene como objetivo el desarrollo de un método sistemático de diseño de arrays de ranuras inclinadas y desplazadas del centro (en lo sucesivo “ranuras compuestas”), definido en 1971 como uno de los desafíos a superar dentro del mundo del diseño de antennas. La técnica empleada se basa en el Método de los Momentos, la Teoría de Circuitos y la Teoría de Conexión Aleatoria de Matrices de Dispersión. Al tratarse de un método circuital, la primera parte de la tesis se corresponde con el estudio de la aplicabilidad de las redes equivalentes fundamentales, su capacidad para recrear fenómenos físicos de la ranura, las limitaciones y ventajas que presentan para caracterizar las diferentes configuraciones de slot compuesto. Se profundiza en las diferencias entre las redes en T y en ! y se condiciona la selección de una u otra dependiendo del tipo de elemento radiante. Una vez seleccionado el tipo de red a emplear en el diseño del sistema, se ha desarrollado un algoritmo de cascadeo progresivo desde el puerto alimentador hacia el cortocircuito que termina el modelo. Este algoritmo es independiente del número de elementos, la frecuencia central de funcionamiento, del ángulo de inclinación de las ranuras y de la red equivalente seleccionada (en T o en !). Se basa en definir el diseño del array como un Problema de Satisfacción de Condiciones (en inglés, Constraint Satisfaction Problem) que se resuelve por un método de Búsqueda en Retroceso (Backtracking algorithm). Como resultado devuelve un circuito equivalente del array completo adaptado a su entrada y cuyos elementos consumen una potencia acorde a una distribución de amplitud dada para el array. En toda agrupación de antennas, el acoplo mutuo entre elementos a través del campo radiado representa uno de los principales problemas para el ingeniero y sus efectos perjudican a las prestaciones globales del sistema, tanto en adaptación como en capacidad de radiación. El empleo de circuito equivalente se descartó por la dificultad que suponía la caracterización de estos efectos y su inclusión en la etapa de diseño. En esta tesis doctoral el acoplo también se ha modelado como una red equivalente cuyos elementos son transformadores ideales y admitancias, conectada al conjunto de redes equivalentes que representa el array. Al comparar los resultados estimados en términos de pérdidas de retorno y radiación con aquellos obtenidos a partir de programas comerciales populares como CST Microwave Studio se confirma la validez del método aquí propuesto, el primer método de diseño sistemático de arrays de ranuras compuestos alimentados por guía de onda rectangular. Al tratarse de ranuras no resonantes, el ancho de banda en pérdidas de retorno es mucho mas amplio que el que presentan arrays de slots rectos. Para arrays bidimensionales, el ángulo de inclinación puede ajustarse de manera que el campo quede polarizado en los planos de bajos lóbulos secundarios. Además de simulaciones se han diseñado, construido y medido dos prototipos centrados en la frecuencia de 12GHz, de seis y diez elementos. Las medidas de pérdidas de retorno y diagrama de radiación revelan excelentes resultados, certificando la bondad del método genuino Method of Moments - Forward Matching Procedure desarrollado a lo largo de esta tésis. Abstract The slot antenna arrays are well known systems from the decade of 40s, mainly intended to be part of radar systems of large warships and terrestrial stations where size and weight were not highly restrictive. Over the years, mainly due to significant advances in materials and manufacturing methods, the range of applications of this type of radiating systems grew significantly. From new biomedical technologies, collision avoidance systems in cars and aircraft navigation, short communication links with high bit transfer rate and even embedded systems in satellites for television broadcast. Within this family of antennas, two groups stand out as being the most frequent in the literature: parallel plate antennas with slots placed in a circular or spiral distribution and clusters of waveguide linear arrays. To continue the vast research work carried out during the last decades in the Tokyo Institute of Technology and in the Radiation Group at the Universidad Politécnica de Madrid, this thesis focuses on the latter group, although it represents a technique that drastically breaks with traditional design methodologies. The arrays of slots straight and parallel to the axis of the feeding rectangular waveguide are without a doubt the most used models because of the reliability that they present at high frequencies, its ability to handle large amounts of power and their simplicity of design and manufacturing. However, there also exist disadvantages as narrow bandwidth in return loss and rapid degradation of the radiation pattern with frequency. These are due to the resonant nature of radiating elements: away from the resonance status, the overall system performance and radiation pattern diminish. For two-dimensional arrays of straight slots, the electric field is polarized transverse to the radiators, corresponding to the plane of high side-lobe level. This thesis aims to develop a systematic method of designing arrays of angled and displaced slots (hereinafter "compound slots"), defined in 1971 as one of the challenges to overcome in the world of antenna design. The used technique is based on the Method of Moments, Circuit Theory and the Theory of Scattering Matrices Connection. Being a circuitry-based method, the first part of this dissertation corresponds to the study of the applicability of the basic equivalent networks, their ability to recreate the slot physical phenomena, their limitations and advantages presented to characterize different compound slot configurations. It delves into the differences of T and ! and determines the selection of the most suitable one depending on the type of radiating element. Once the type of network to be used in the system design is selected, a progressive algorithm called Forward Matching Procedure has been developed to connect the proper equivalent networks from the feeder port to shorted ending. This algorithm is independent of the number of elements, the central operating frequency, the angle of inclination of the slots and selected equivalent network (T or ! networks). It is based on the definition of the array design as a Constraint Satisfaction Problem, solved by means of a Backtracking Algorithm. As a result, the method returns an equivalent circuit of the whole array which is matched at its input port and whose elements consume a power according to a given amplitude distribution for the array. In any group of antennas, the mutual coupling between elements through the radiated field represents one of the biggest problems that the engineer faces and its effects are detrimental to the overall performance of the system, both in radiation capabilities and return loss. The employment of an equivalent circuit for the array design was discarded by some authors because of the difficulty involved in the characterization of the coupling effects and their inclusion in the design stage. In this thesis the coupling has also been modeled as an equivalent network whose elements are ideal transformers and admittances connected to the set of equivalent networks that represent the antennas of the array. By comparing the estimated results in terms of return loss and radiation with those obtained from popular commercial software as CST Microwave Studio, the validity of the proposed method is fully confirmed, representing the first method of systematic design of compound-slot arrays fed by rectangular waveguide. Since these slots do not work under the resonant status, the bandwidth in return loss is much wider than the longitudinal-slot arrays. For the case of two-dimensional arrays, the angle of inclination can be adjusted so that the field is polarized at the low side-lobe level plane. Besides the performed full-wave simulations two prototypes of six and ten elements for the X-band have been designed, built and measured, revealing excellent results and agreement with the expected results. These facts certify that the genuine technique Method of Moments - Matching Forward Procedure developed along this thesis is valid and trustable.
Resumo:
The design and development of spoken interaction systems has been a thoroughly studied research scope for the last decades. The aim is to obtain systems with the ability to interact with human agents with a high degree of naturalness and efficiency, allowing them to carry out the actions they desire using speech, as it is the most natural means of communication between humans. To achieve that degree of naturalness, it is not enough to endow systems with the ability to accurately understand the user’s utterances and to properly react to them, even considering the information provided by the user in his or her previous interactions. The system has also to be aware of the evolution of the conditions under which the interaction takes place, in order to act the most coherent way as possible at each moment. Consequently, one of the most important features of the system is that it has to be context-aware. This context awareness of the system can be reflected in the modification of the behaviour of the system taking into account the current situation of the interaction. For instance, the system should decide which action it has to carry out, or the way to perform it, depending on the user that requests it, on the way that the user addresses the system, on the characteristics of the environment in which the interaction takes place, and so on. In other words, the system has to adapt its behaviour to these evolving elements of the interaction. Moreover that adaptation has to be carried out, if possible, in such a way that the user: i) does not perceive that the system has to make any additional effort, or to devote interaction time to perform tasks other than carrying out the requested actions, and ii) does not have to provide the system with any additional information to carry out the adaptation, which could imply a lesser efficiency of the interaction, since users should devote several interactions only to allow the system to become adapted. In the state-of-the-art spoken dialogue systems, researchers have proposed several disparate strategies to adapt the elements of the system to different conditions of the interaction (such as the acoustic characteristics of a specific user’s speech, the actions previously requested, and so on). Nevertheless, to our knowledge there is not any consensus on the procedures to carry out these adaptation. The approaches are to an extent unrelated from one another, in the sense that each one considers different pieces of information, and the treatment of that information is different taking into account the adaptation carried out. In this regard, the main contributions of this Thesis are the following ones: Definition of a contextualization framework. We propose a unified approach that can cover any strategy to adapt the behaviour of a dialogue system to the conditions of the interaction (i.e. the context). In our theoretical definition of the contextualization framework we consider the system’s context as all the sources of variability present at any time of the interaction, either those ones related to the environment in which the interaction takes place, or to the human agent that addresses the system at each moment. Our proposal relies on three aspects that any contextualization approach should fulfill: plasticity (i.e. the system has to be able to modify its behaviour in the most proactive way taking into account the conditions under which the interaction takes place), adaptivity (i.e. the system has also to be able to consider the most appropriate sources of information at each moment, both environmental and user- and dialogue-dependent, to effectively adapt to the conditions aforementioned), and transparency (i.e. the system has to carry out the contextualizaton-related tasks in such a way that the user neither perceives them nor has to do any effort in providing the system with any information that it needs to perform that contextualization). Additionally, we could include a generality aspect to our proposed framework: the main features of the framework should be easy to adopt in any dialogue system, regardless of the solution proposed to manage the dialogue. Once we define the theoretical basis of our contextualization framework, we propose two cases of study on its application in a spoken dialogue system. We focus on two aspects of the interaction: the contextualization of the speech recognition models, and the incorporation of user-specific information into the dialogue flow. One of the modules of a dialogue system that is more prone to be contextualized is the speech recognition system. This module makes use of several models to emit a recognition hypothesis from the user’s speech signal. Generally speaking, a recognition system considers two types of models: an acoustic one (that models each of the phonemes that the recognition system has to consider) and a linguistic one (that models the sequences of words that make sense for the system). In this work we contextualize the language model of the recognition system in such a way that it takes into account the information provided by the user in both his or her current utterance and in the previous ones. These utterances convey information useful to help the system in the recognition of the next utterance. The contextualization approach that we propose consists of a dynamic adaptation of the language model that is used by the recognition system. We carry out this adaptation by means of a linear interpolation between several models. Instead of training the best interpolation weights, we make them dependent on the conditions of the dialogue. In our approach, the system itself will obtain these weights as a function of the reliability of the different elements of information available, such as the semantic concepts extracted from the user’s utterance, the actions that he or she wants to carry out, the information provided in the previous interactions, and so on. One of the aspects more frequently addressed in Human-Computer Interaction research is the inclusion of user specific characteristics into the information structures managed by the system. The idea is to take into account the features that make each user different from the others in order to offer to each particular user different services (or the same service, but in a different way). We could consider this approach as a user-dependent contextualization of the system. In our work we propose the definition of a user model that contains all the information of each user that could be potentially useful to the system at a given moment of the interaction. In particular we will analyze the actions that each user carries out throughout his or her interaction. The objective is to determine which of these actions become the preferences of that user. We represent the specific information of each user as a feature vector. Each of the characteristics that the system will take into account has a confidence score associated. With these elements, we propose a probabilistic definition of a user preference, as the action whose likelihood of being addressed by the user is greater than the one for the rest of actions. To include the user dependent information into the dialogue flow, we modify the information structures on which the dialogue manager relies to retrieve information that could be needed to solve the actions addressed by the user. Usage preferences become another source of contextual information that will be considered by the system towards a more efficient interaction (since the new information source will help to decrease the need of the system to ask users for additional information, thus reducing the number of turns needed to carry out a specific action). To test the benefits of the contextualization framework that we propose, we carry out an evaluation of the two strategies aforementioned. We gather several performance metrics, both objective and subjective, that allow us to compare the improvements of a contextualized system against the baseline one. We will also gather the user’s opinions as regards their perceptions on the behaviour of the system, and its degree of adaptation to the specific features of each interaction. Resumen El diseño y el desarrollo de sistemas de interacción hablada ha sido objeto de profundo estudio durante las pasadas décadas. El propósito es la consecución de sistemas con la capacidad de interactuar con agentes humanos con un alto grado de eficiencia y naturalidad. De esta manera, los usuarios pueden desempeñar las tareas que deseen empleando la voz, que es el medio de comunicación más natural para los humanos. A fin de alcanzar el grado de naturalidad deseado, no basta con dotar a los sistemas de la abilidad de comprender las intervenciones de los usuarios y reaccionar a ellas de manera apropiada (teniendo en consideración, incluso, la información proporcionada en previas interacciones). Adicionalmente, el sistema ha de ser consciente de las condiciones bajo las cuales transcurre la interacción, así como de la evolución de las mismas, de tal manera que pueda actuar de la manera más coherente en cada instante de la interacción. En consecuencia, una de las características primordiales del sistema es que debe ser sensible al contexto. Esta capacidad del sistema de conocer y emplear el contexto de la interacción puede verse reflejada en la modificación de su comportamiento debida a las características actuales de la interacción. Por ejemplo, el sistema debería decidir cuál es la acción más apropiada, o la mejor manera de llevarla a término, dependiendo del usuario que la solicita, del modo en el que lo hace, etcétera. En otras palabras, el sistema ha de adaptar su comportamiento a tales elementos mutables (o dinámicos) de la interacción. Dos características adicionales son requeridas a dicha adaptación: i) el usuario no ha de percibir que el sistema dedica recursos (temporales o computacionales) a realizar tareas distintas a las que aquél le solicita, y ii) el usuario no ha de dedicar esfuerzo alguno a proporcionar al sistema información adicional para llevar a cabo la interacción. Esto último implicaría una menor eficiencia de la interacción, puesto que los usuarios deberían dedicar parte de la misma a proporcionar información al sistema para su adaptación, sin ningún beneficio inmediato. En los sistemas de diálogo hablado propuestos en la literatura, se han propuesto diferentes estrategias para llevar a cabo la adaptación de los elementos del sistema a las diferentes condiciones de la interacción (tales como las características acústicas del habla de un usuario particular, o a las acciones a las que se ha referido con anterioridad). Sin embargo, no existe una estrategia fija para proceder a dicha adaptación, sino que las mismas no suelen guardar una relación entre sí. En este sentido, cada una de ellas tiene en cuenta distintas fuentes de información, la cual es tratada de manera diferente en función de las características de la adaptación buscada. Teniendo en cuenta lo anterior, las contribuciones principales de esta Tesis son las siguientes: Definición de un marco de contextualización. Proponemos un criterio unificador que pueda cubrir cualquier estrategia de adaptación del comportamiento de un sistema de diálogo a las condiciones de la interacción (esto es, el contexto de la misma). En nuestra definición teórica del marco de contextualización consideramos el contexto del sistema como todas aquellas fuentes de variabilidad presentes en cualquier instante de la interacción, ya estén relacionadas con el entorno en el que tiene lugar la interacción, ya dependan del agente humano que se dirige al sistema en cada momento. Nuestra propuesta se basa en tres aspectos que cualquier estrategia de contextualización debería cumplir: plasticidad (es decir, el sistema ha de ser capaz de modificar su comportamiento de la manera más proactiva posible, teniendo en cuenta las condiciones en las que tiene lugar la interacción), adaptabilidad (esto es, el sistema ha de ser capaz de considerar la información oportuna en cada instante, ya dependa del entorno o del usuario, de tal manera que adecúe su comportamiento de manera eficaz a las condiciones mencionadas), y transparencia (que implica que el sistema ha de desarrollar las tareas relacionadas con la contextualización de tal manera que el usuario no perciba la manera en que dichas tareas se llevan a cabo, ni tampoco deba proporcionar al sistema con información adicional alguna). De manera adicional, incluiremos en el marco propuesto el aspecto de la generalidad: las características del marco de contextualización han de ser portables a cualquier sistema de diálogo, con independencia de la solución propuesta en los mismos para gestionar el diálogo. Una vez hemos definido las características de alto nivel de nuestro marco de contextualización, proponemos dos estrategias de aplicación del mismo a un sistema de diálogo hablado. Nos centraremos en dos aspectos de la interacción a adaptar: los modelos empleados en el reconocimiento de habla, y la incorporación de información específica de cada usuario en el flujo de diálogo. Uno de los módulos de un sistema de diálogo más susceptible de ser contextualizado es el sistema de reconocimiento de habla. Este módulo hace uso de varios modelos para generar una hipótesis de reconocimiento a partir de la señal de habla. En general, un sistema de reconocimiento emplea dos tipos de modelos: uno acústico (que modela cada uno de los fonemas considerados por el reconocedor) y uno lingüístico (que modela las secuencias de palabras que tienen sentido desde el punto de vista de la interacción). En este trabajo contextualizamos el modelo lingüístico del reconocedor de habla, de tal manera que tenga en cuenta la información proporcionada por el usuario, tanto en su intervención actual como en las previas. Estas intervenciones contienen información (semántica y/o discursiva) que puede contribuir a un mejor reconocimiento de las subsiguientes intervenciones del usuario. La estrategia de contextualización propuesta consiste en una adaptación dinámica del modelo de lenguaje empleado en el reconocedor de habla. Dicha adaptación se lleva a cabo mediante una interpolación lineal entre diferentes modelos. En lugar de entrenar los mejores pesos de interpolación, proponemos hacer los mismos dependientes de las condiciones actuales de cada diálogo. El propio sistema obtendrá estos pesos como función de la disponibilidad y relevancia de las diferentes fuentes de información disponibles, tales como los conceptos semánticos extraídos a partir de la intervención del usuario, o las acciones que el mismo desea ejecutar. Uno de los aspectos más comúnmente analizados en la investigación de la Interacción Persona-Máquina es la inclusión de las características específicas de cada usuario en las estructuras de información empleadas por el sistema. El objetivo es tener en cuenta los aspectos que diferencian a cada usuario, de tal manera que el sistema pueda ofrecer a cada uno de ellos el servicio más apropiado (o un mismo servicio, pero de la manera más adecuada a cada usuario). Podemos considerar esta estrategia como una contextualización dependiente del usuario. En este trabajo proponemos la definición de un modelo de usuario que contenga toda la información relativa a cada usuario, que pueda ser potencialmente utilizada por el sistema en un momento determinado de la interacción. En particular, analizaremos aquellas acciones que cada usuario decide ejecutar a lo largo de sus diálogos con el sistema. Nuestro objetivo es determinar cuáles de dichas acciones se convierten en las preferencias de cada usuario. La información de cada usuario quedará representada mediante un vector de características, cada una de las cuales tendrá asociado un valor de confianza. Con ambos elementos proponemos una definición probabilística de una preferencia de uso, como aquella acción cuya verosimilitud es mayor que la del resto de acciones solicitadas por el usuario. A fin de incluir la información dependiente de usuario en el flujo de diálogo, llevamos a cabo una modificación de las estructuras de información en las que se apoya el gestor de diálogo para recuperar información necesaria para resolver ciertos diálogos. En dicha modificación las preferencias de cada usuario pasarán a ser una fuente adicional de información contextual, que será tenida en cuenta por el sistema en aras de una interacción más eficiente (puesto que la nueva fuente de información contribuirá a reducir la necesidad del sistema de solicitar al usuario información adicional, dando lugar en consecuencia a una reducción del número de intervenciones necesarias para llevar a cabo una acción determinada). Para determinar los beneficios de las aplicaciones del marco de contextualización propuesto, llevamos a cabo una evaluación de un sistema de diálogo que incluye las estrategias mencionadas. Hemos recogido diversas métricas, tanto objetivas como subjetivas, que nos permiten determinar las mejoras aportadas por un sistema contextualizado en comparación con el sistema sin contextualizar. De igual manera, hemos recogido las opiniones de los participantes en la evaluación acerca de su percepción del comportamiento del sistema, y de su capacidad de adaptación a las condiciones concretas de cada interacción.
Resumo:
The concept of independence has been recently generalized to the constraint logic programming (CLP) paradigm. Also, several abstract domains specifically designed for CLP languages, and whose information can be used to detect the generalized independence conditions, have been recently defined. As a result we are now in a position where automatic parallelization of CLP programs is feasible. In this paper we study the task of automatically parallelizing CLP programs based on such analyses, by transforming them to explicitly concurrent programs in our parallel CC platform (CIAO) as well as to AKL. We describe the analysis and transformation process, and study its efficiency, accuracy, and effectiveness in program parallelization. The information gathered by the analyzers is evaluated not only in terms of its accuracy, i.e. its ability to determine the actual dependencies among the program variables, but also of its effectiveness, measured in terms of code reduction in the resulting parallelized programs. Given that only a few abstract domains have been already defined for CLP, and that none of them were specifically designed for dependency detection, the aim of the evaluation is not only to asses the effectiveness of the available domains, but also to study what additional information it would be desirable to infer, and what domains would be appropriate for further improving the parallelization process.
Resumo:
The utilisation of thin film technology to develop film bulk acoustic resonators (FBARs) and solidly mounted resonators (SMRs), offers great potential to outperform the sensitivity and minimum detection limit of gravimetric sensors. Up to now, the choice between FBARs and SMRs depends primarily on the users' ability to design and fabricate Bragg reflectors and/or membranes, because neither of these two types of resonators has been demonstrated to be superior to the other. In the work reported here, it is shown that identically designed FBARs and SMRs resonating at the same frequency exhibit different responsitivities, Rm, to mass loadings, being the FBARs more responsive than the SMRs. For the specific device design and resonant frequency (~2 GHz) of the resonators presented, FBARs' mass responsitivity is ~20% greater than that of SMRs, and although this value should not be taken as universal for all possible device designs, it clearly indicates that FBAR devices should be favoured over SMRs in gravimetric sensing applications.
Resumo:
In this paper we present a global description of a telematic voting system based on advanced cryptography and on the use of smart cards (VOTESCRIPT system) whose most outstanding characteristic is the ability to verify that the tally carried out by the system is correct, meaning that the results published by the system correspond with votes cast. The VOTESCRIPT system provides an individual verification mechanism allowing each Voter to confirm whether his vote has been correctly counted. The innovation with respect to other solutions lies in the fact that the verification process is private so that Voters have no way of proving what they voted in the presence of a non-authorized third party. Vote buying and selling or any other kind of extortion are prevented. The existence of the Intervention Systems allows the whole electoral process to be controlled by groups of citizens or authorized candidatures. In addition to this the system can simply make an audit not only of the final results, but also of the whole process. Global verification provides the Scrutineers with robust cryptographic evidence which enables unequivocal proof if the system has operated in a fraudulent way.
Resumo:
The understanding of the circulation of ocean currents, the exchange of CO2 between atmosphere and oceans, and the in uence of the oceans on the distribution of heat on a global scale is key to our ability to predict and assess the future evolution of climate.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
The networks need to provide higher speeds than those offered today. For it, considering that in the spectrum radio technologies is the scarcest resource in the development of these technologies and the new developments is essential to maximize the performance of bits per hertz transmitted. Long Term Evolution optimize spectral efficiency modulations with new air interface, and more advanced algorithms radius. These capabilities is the fact that LTE is an IPbased technology that enables end-to-end offer high transmission rates per user and very low latency, ie delay in the response times of the network around only 10 milliseconds, so you can offer any realtime application. LTE is the latest standard in mobile network technology and 3GPP ensure competitiveness in the future, may be considered a technology bridge between 3G networks - current 3.5G and future 4G networks, which are expected to reach speeds of up to 1G . LTE operators provide a simplified architecture but both robust, supporting services on IP technology. The objectives to be achieved through its implementation are ambitious, first users have a wide range of added services like capabilities that currently enjoys with residential broadband access at competitive prices, while the operator will have a network fully IP-based environment, reducing the complexity and cost of the same, which will give operators the opportunity to migrate to LTE directly. A major advantage of LTE is its ability to fuse with existing networks, ensuring interconnection with the same, increasing his current coverage and allowing a data connection established by a user in the environment continue when fade the coverage LTE. Moreover, the operator has the advantage of deploying network gradually, starting initially at areas of high demand for broadband services and expand progressively in line with this. RESUMEN. Las redes necesitan proporcionar velocidades mayores a las ofertadas a día de hoy. Para ello, teniendo en cuenta que en tecnologías radio el espectro es el recurso más escaso, en la evolución de estas tecnologías y en los nuevos desarrollos es esencial maximizar el rendimiento de bits por hercio transmitido. Long Term Evolution optimiza la eficiencia espectral con nuevas modulaciones en la interfaz aire, así como los algoritmos radio más avanzado. A estas capacidades se suma el hecho de que LTE es una tecnología basada en IP de extremo a extremo que permite ofrecer altas velocidades de transmisión por usuario y latencias muy bajas, es decir, retardos en los tiempos de respuesta de la red en torno a sólo 10 milisegundos, por lo que permite ofrecer cualquier tipo de aplicación en tiempo real. LTE es el último estándar en tecnología de redes móviles y asegurará la competitividad de 3GPP en el futuro, pudiendo ser considerada una tecnología puente entre las redes 3G – 3.5G actuales y las futuras redes 4G, de las que se esperan alcanzar velocidades de hasta 1G. LTE proporcionará a las operadoras una arquitectura simplificada pero robusta a la vez, soportando servicios sobre tecnología IP. Los objetivos que se persiguen con su implantación son ambiciosos, por una parte los usuarios dispondrá de una amplia oferta de servicios añadidos con capacidades similares a las que disfruta actualmente con accesos a banda ancha residencial y a precios competitivos, mientras que el operador dispondrá de una red basada en entorno totalmente IP, reduciendo la complejidad y el costo de la misma, lo que dará a las operadoras la oportunidad de migrar a LTE directamente. Una gran ventaja de LTE es su capacidad para fusionarse con las redes existentes, asegurando la interconexión con las mismas, aumentando su actual cobertura y permitiendo que una conexión de datos establecida por un usuario en el entorno LTE continúe cuando la cobertura LTE se desvanezca. Por otra parte el operador tiene la ventaja de desplegar la red LTE de forma gradual, comenzando inicialmente por las áreas de gran demanda de servicios de banda ancha y ampliarla progresivamente en función de ésta.
Resumo:
Collaborative e-learning is increasingly appealing as a pedagogical approach that can positively affect student learning. We propose a didactical model that integrates multimedia with collaborative tools and peer assessment to foster collaborative e-learning. In this paper, we explain it and present the results of its application to the “International Seminars on Materials Science” online course. The proposed didactical model consists of five educational activities. In the first three, students review the multimedia resources proposed by the teacher in collaboration with their classmates. Then, in the last two activities, they create their own multimedia resources and assess those created by their classmates. These activities foster communication and collaboration among students and their ability to use and create multimedia resources. Our purpose is to encourage the creativity, motivation, and dynamism of the learning process for both teachers and students.
Resumo:
We present an undergraduate course on concurrent programming where formal models are used in different stages of the learning process. The main practical difference with other approaches lies in the fact that the ability to develop correct concurrent software relies on a systematic transformation of formal models of inter-process interaction (so called shared resources), rather than on the specific constructs of some programming language. Using a resource-centric rather than a language-centric approach has some benefits for both teachers and students. Besides the obvious advantage of being independent of the programming language, the models help in the early validation of concurrent software design, provide students and teachers with a lingua franca that greatly simplifies communication at the classroom and during supervision, and help in the automatic generation of tests for the practical assignments. This method has been in use, with slight variations, for some 15 years, surviving changes in the programming language and course length. In this article, we describe the components and structure of the current incarnation of the course?which uses Java as target language?and some tools used to support our method. We provide a detailed description of the different outcomes that the model-driven approach delivers (validation of the initial design, automatic generation of tests, and mechanical generation of code) from a teaching perspective. A critical discussion on the perceived advantages and risks of our approach follows, including some proposals on how these risks can be minimized. We include a statistical analysis to show that our method has a positive impact in the student ability to understand concurrency and to generate correct code.