14 resultados para Z7164.L1 U6
em Universidad Politécnica de Madrid
Resumo:
Learning the structure of a graphical model from data is a common task in a wide range of practical applications. In this paper, we focus on Gaussian Bayesian networks, i.e., on continuous data and directed acyclic graphs with a joint probability density of all variables given by a Gaussian. We propose to work in an equivalence class search space, specifically using the k-greedy equivalence search algorithm. This, combined with regularization techniques to guide the structure search, can learn sparse networks close to the one that generated the data. We provide results on some synthetic networks and on modeling the gene network of the two biological pathways regulating the biosynthesis of isoprenoids for the Arabidopsis thaliana plant
Resumo:
Knowledge of the uncertainty of measurement of testing results is important when results have to be compared with limits and specifications. In the measurement of sound insulation following standards UNE EN ISO 140-4 the uncertainty of the final magnitude is mainly associated to the average sound pressure levels L1 and L2 measured. A parameter that allows us to quantify the spatial variation of the sound pressure level is the standard deviation of the pressure levels measured at different points of the room. In this work, for a wide number of measurements following standards UNE EN ISO 140-4 we analyzed qualitatively the behaviour of the standard deviation for L1 and L2. The study of sound fields in enclosed spaces is very difficult. There are a wide variety of rooms with different sound fields depending on factors as volume, geometry and materials. In general, we observe that the L1 and L2 standard deviations contain peaks and dips independent on characteristics of the rooms at single frequencies that could correspond to critical frequencies of walls, floors and windows or even to temporal alterations of the sound field. Also, in most measurements according to UNE EN ISO 140-4 a large similitude between L1 and L2 standard deviation is found. We believe that such result points to a coupled system between source and receiving rooms, mainly at low frequencies the shape of the L1 and L2 standard deviations is comparable to the velocity level standard deviation on a wall
Resumo:
The analysis of complex nonlinear systems is often carried out using simpler piecewise linear representations of them. A principled and practical technique is proposed to linearize and evaluate arbitrary continuous nonlinear functions using polygonal (continuous piecewise linear) models under the L1 norm. A thorough error analysis is developed to guide an optimal design of two kinds of polygonal approximations in the asymptotic case of a large budget of evaluation subintervals N. The method allows the user to obtain the level of linearization (N) for a target approximation error and vice versa. It is suitable for, but not limited to, an efficient implementation in modern Graphics Processing Units (GPUs), allowing real-time performance of computationally demanding applications. The quality and efficiency of the technique has been measured in detail on two nonlinear functions that are widely used in many areas of scientific computing and are expensive to evaluate.
Resumo:
Gibberellins (GAs) are plant hormones that affect plant growth and regulate gene expression differentially across tissues. To study the molecular mechanisms underlying GA signaling in Arabidopsis thaliana, we focused on a GDSL lipase gene (LIP1) induced by GA and repressed by DELLA proteins. LIP1 contains an L1 box promoter sequence, conserved in the promoters of epidermis-specific genes, that is bound by ATML1, an HD-ZIP transcription factor required for epidermis specification. In this study, we demonstrate that LIP1 is specifically expressed in the epidermis and that its L1 box sequence mediates GA-induced transcription. We show that this sequence is overrepresented in the upstream regulatory regions of GA-induced and DELLA-repressed transcriptomes and that blocking GA signaling in the epidermis represses the expression of L1 box–containing genes and negatively affects seed germination. We show that DELLA proteins interact directly with ATML1 and its paralogue PDF2 and that silencing of both HD-ZIP transcription factors inhibits epidermal gene expression and delays germination. Our results indicate that, upon seed imbibition, increased GA levels reduce DELLA protein abundance and release ATML1/PDF2 to activate L1 box gene expression, thus enhancing germination potential.
Resumo:
This paper studies feature subset selection in classification using a multiobjective estimation of distribution algorithm. We consider six functions, namely area under ROC curve, sensitivity, specificity, precision, F1 measure and Brier score, for evaluation of feature subsets and as the objectives of the problem. One of the characteristics of these objective functions is the existence of noise in their values that should be appropriately handled during optimization. Our proposed algorithm consists of two major techniques which are specially designed for the feature subset selection problem. The first one is a solution ranking method based on interval values to handle the noise in the objectives of this problem. The second one is a model estimation method for learning a joint probabilistic model of objectives and variables which is used to generate new solutions and advance through the search space. To simplify model estimation, l1 regularized regression is used to select a subset of problem variables before model learning. The proposed algorithm is compared with a well-known ranking method for interval-valued objectives and a standard multiobjective genetic algorithm. Particularly, the effects of the two new techniques are experimentally investigated. The experimental results show that the proposed algorithm is able to obtain comparable or better performance on the tested datasets.
Resumo:
Pragmatism is the leading motivation of regularization. We can understand regularization as a modification of the maximum-likelihood estimator so that a reasonable answer could be given in an unstable or ill-posed situation. To mention some typical examples, this happens when fitting parametric or non-parametric models with more parameters than data or when estimating large covariance matrices. Regularization is usually used, in addition, to improve the bias-variance tradeoff of an estimation. Then, the definition of regularization is quite general, and, although the introduction of a penalty is probably the most popular type, it is just one out of multiple forms of regularization. In this dissertation, we focus on the applications of regularization for obtaining sparse or parsimonious representations, where only a subset of the inputs is used. A particular form of regularization, L1-regularization, plays a key role for reaching sparsity. Most of the contributions presented here revolve around L1-regularization, although other forms of regularization are explored (also pursuing sparsity in some sense). In addition to present a compact review of L1-regularization and its applications in statistical and machine learning, we devise methodology for regression, supervised classification and structure induction of graphical models. Within the regression paradigm, we focus on kernel smoothing learning, proposing techniques for kernel design that are suitable for high dimensional settings and sparse regression functions. We also present an application of regularized regression techniques for modeling the response of biological neurons. Supervised classification advances deal, on the one hand, with the application of regularization for obtaining a na¨ıve Bayes classifier and, on the other hand, with a novel algorithm for brain-computer interface design that uses group regularization in an efficient manner. Finally, we present a heuristic for inducing structures of Gaussian Bayesian networks using L1-regularization as a filter. El pragmatismo es la principal motivación de la regularización. Podemos entender la regularización como una modificación del estimador de máxima verosimilitud, de tal manera que se pueda dar una respuesta cuando la configuración del problema es inestable. A modo de ejemplo, podemos mencionar el ajuste de modelos paramétricos o no paramétricos cuando hay más parámetros que casos en el conjunto de datos, o la estimación de grandes matrices de covarianzas. Se suele recurrir a la regularización, además, para mejorar el compromiso sesgo-varianza en una estimación. Por tanto, la definición de regularización es muy general y, aunque la introducción de una función de penalización es probablemente el método más popular, éste es sólo uno de entre varias posibilidades. En esta tesis se ha trabajado en aplicaciones de regularización para obtener representaciones dispersas, donde sólo se usa un subconjunto de las entradas. En particular, la regularización L1 juega un papel clave en la búsqueda de dicha dispersión. La mayor parte de las contribuciones presentadas en la tesis giran alrededor de la regularización L1, aunque también se exploran otras formas de regularización (que igualmente persiguen un modelo disperso). Además de presentar una revisión de la regularización L1 y sus aplicaciones en estadística y aprendizaje de máquina, se ha desarrollado metodología para regresión, clasificación supervisada y aprendizaje de estructura en modelos gráficos. Dentro de la regresión, se ha trabajado principalmente en métodos de regresión local, proponiendo técnicas de diseño del kernel que sean adecuadas a configuraciones de alta dimensionalidad y funciones de regresión dispersas. También se presenta una aplicación de las técnicas de regresión regularizada para modelar la respuesta de neuronas reales. Los avances en clasificación supervisada tratan, por una parte, con el uso de regularización para obtener un clasificador naive Bayes y, por otra parte, con el desarrollo de un algoritmo que usa regularización por grupos de una manera eficiente y que se ha aplicado al diseño de interfaces cerebromáquina. Finalmente, se presenta una heurística para inducir la estructura de redes Bayesianas Gaussianas usando regularización L1 a modo de filtro.
Resumo:
Applications that operate on meshes are very popular in High Performance Computing (HPC) environments. In the past, many techniques have been developed in order to optimize the memory accesses for these datasets. Different loop transformations and domain decompositions are com- monly used for structured meshes. However, unstructured grids are more challenging. The memory accesses, based on the mesh connectivity, do not map well to the usual lin- ear memory model. This work presents a method to improve the memory performance which is suitable for HPC codes that operate on meshes. We develop a method to adjust the sequence in which the data are used inside the algorithm, by means of traversing and sorting the mesh. This sorted mesh can be transferred sequentially to the lower memory levels and allows for minimum data transfer requirements. The method also reduces the lower memory requirements dra- matically: up to 63% of the L1 cache misses are removed in a traditional cache system. We have obtained speedups of up to 2.58 on memory operations as measured in a general- purpose CPU. An improvement is also observed with se- quential access memories, where we have observed reduc- tions of up to 99% in the required low-level memory size.
Resumo:
The first level data cache un modern processors has become a major consumer of energy due to its increasing size and high frequency access rate. In order to reduce this high energy con sumption, we propose in this paper a straightforward filtering technique based on a highly accurate forwarding predictor. Specifically, a simple structure predicts whether a load instruction will obtain its corresponding data via forwarding from the load-store structure -thus avoiding the data cache access - or if it will be provided by the data cache. This mechanism manages to reduce the data cache energy consumption by an average of 21.5% with a negligible performance penalty of less than 0.1%. Furthermore, in this paper we focus on the cache static energy consumption too by disabling a portin of sets of the L2 associative cache. Overall, when merging both proposals, the combined L1 and L2 total energy consumption is reduced by an average of 29.2% with a performance penalty of just 0.25%. Keywords: Energy consumption; filtering; forwarding predictor; cache hierarchy
Resumo:
Multilayered, counterflow, parallel-plate heat exchangers are analyzed numerically and theoretically. The analysis, carried out for constant property fluids, considers a hydrodynamically developed laminar flow and neglects longitudinal conduction both in the fluid and in the plates. The solution for the temperature field involves eigenfunction expansions that can be solved in terms of Whittaker functions using standard symbolic algebra packages, leading to analytical expressions that provide the eigenvalues numerically. It is seen that the approximate solution obtained by retaining the first two modes in the eigenfunction expansion provides an accurate representation for the temperature away from the entrance regions, specially for long heat exchangers, thereby enabling simplified expressions for the wall and bulk temperatures, local heat-transfer rate, overall heat-transfer coefficient, and outlet bulk temperatures. The agreement between the numerical and theoretical results suggests the possibility of using the analytical solutions presented herein as benchmark problems for computational heat-transfer codes.
Resumo:
Whole brain resting state connectivity is a promising biomarker that might help to obtain an early diagnosis in many neurological diseases, such as dementia. Inferring resting-state connectivity is often based on correlations, which are sensitive to indirect connections, leading to an inaccurate representation of the real backbone of the network. The precision matrix is a better representation for whole brain connectivity, as it considers only direct connections. The network structure can be estimated using the graphical lasso (GL), which achieves sparsity through l1-regularization on the precision matrix. In this paper, we propose a structural connectivity adaptive version of the GL, where weaker anatomical connections are represented as stronger penalties on the corre- sponding functional connections. We applied beamformer source reconstruction to the resting state MEG record- ings of 81 subjects, where 29 were healthy controls, 22 were single-domain amnestic Mild Cognitive Impaired (MCI), and 30 were multiple-domain amnestic MCI. An atlas-based anatomical parcellation of 66 regions was ob- tained for each subject, and time series were assigned to each of the regions. The fiber densities between the re- gions, obtained with deterministic tractography from diffusion-weighted MRI, were used to define the anatomical connectivity. Precision matrices were obtained with the region specific time series in five different frequency bands. We compared our method with the traditional GL and a functional adaptive version of the GL, in terms of log-likelihood and classification accuracies between the three groups. We conclude that introduc- ing an anatomical prior improves the expressivity of the model and, in most cases, leads to a better classification between groups.
Resumo:
This paper presents a registration method for images with global illumination variations. The method is based on a joint iterative optimization (geometric and photometric) of the L1 norm of the intensity error. Two strategies are compared to directly find the appropriate intensity transformation within each iteration: histogram specification and the solution obtained by analyzing the necessary optimality conditions. Such strategies reduce the search space of the joint optimization to that of the geometric transformation between the images.
Resumo:
El funcionamiento interno del cerebro es todavía hoy en día un misterio, siendo su comprensión uno de los principales desafíos a los que se enfrenta la ciencia moderna. El córtex cerebral es el área del cerebro donde tienen lugar los procesos cerebrales de más alto nivel, cómo la imaginación, el juicio o el pensamiento abstracto. Las neuronas piramidales, un tipo específico de neurona, suponen cerca del 80% de los cerca de los 10.000 millones de que componen el córtex cerebral, haciendo de ellas un objetivo principal en el estudio del funcionamiento del cerebro. La morfología neuronal, y más específicamente la morfología dendrítica, determina cómo estas procesan la información y los patrones de conexión entre neuronas, siendo los modelos computacionales herramientas imprescindibles para el estudio de su rol en el funcionamiento del cerebro. En este trabajo hemos creado un modelo computacional, con más de 50 variables relativas a la morfología dendrítica, capaz de simular el crecimiento de arborizaciones dendríticas basales completas a partir de reconstrucciones de neuronas piramidales reales, abarcando desde el número de dendritas hasta el crecimiento los los árboles dendríticos. A diferencia de los trabajos anteriores, nuestro modelo basado en redes Bayesianas contempla la arborización dendrítica en su conjunto, teniendo en cuenta las interacciones entre dendritas y detectando de forma automática las relaciones entre las variables morfológicas que caracterizan la arborización. Además, el análisis de las redes Bayesianas puede ayudar a identificar relaciones hasta ahora desconocidas entre variables morfológicas. Motivado por el estudio de la orientación de las dendritas basales, en este trabajo se introduce una regularización L1 generalizada, aplicada al aprendizaje de la distribución von Mises multivariante, una de las principales distribuciones de probabilidad direccional multivariante. También se propone una distancia circular multivariante que puede utilizarse para estimar la divergencia de Kullback-Leibler entre dos muestras de datos circulares. Comparamos los modelos con y sin regularizaci ón en el estudio de la orientación de la dendritas basales en neuronas humanas, comprobando que, en general, el modelo regularizado obtiene mejores resultados. El muestreo, ajuste y representación de la distribución von Mises multivariante se implementa en un nuevo paquete de R denominado mvCircular.---ABSTRACT---The inner workings of the brain are, as of today, a mystery. To understand the brain is one of the main challenges faced by current science. The cerebral cortex is the region of the brain where all superior brain processes, like imagination, judge and abstract reasoning take place. Pyramidal neurons, a specific type of neurons, constitute approximately the 80% of the more than 10.000 million neurons that compound the cerebral cortex. It makes the study of the pyramidal neurons crucial in order to understand how the brain works. Neuron morphology, and specifically the dendritic morphology, determines how the information is processed in the neurons, as well as the connection patterns among neurons. Computational models are one of the main tools for studying dendritic morphology and its role in the brain function. We have built a computational model that contains more than 50 morphological variables of the dendritic arborizations. This model is able to simulate the growth of complete dendritic arborizations from real neuron reconstructions, starting with the number of basal dendrites, and ending modeling the growth of dendritic trees. One of the main diferences between our approach, mainly based on the use of Bayesian networks, and other models in the state of the art is that we model the whole dendritic arborization instead of focusing on individual trees, which makes us able to take into account the interactions between dendrites and to automatically detect relationships between the morphologic variables that characterize the arborization. Moreover, the posterior analysis of the relationships in the model can help to identify new relations between morphological variables. Motivated by the study of the basal dendrites orientation, a generalized L1 regularization applied to the multivariate von Mises distribution, one of the most used distributions in multivariate directional statistics, is also introduced in this work. We also propose a circular multivariate distance that can be used to estimate the Kullback-Leibler divergence between two circular data samples. We compare the regularized and unregularized models on basal dendrites orientation of human neurons and prove that regularized model achieves better results than non regularized von Mises model. Sampling, fitting and plotting functions for the multivariate von Mises are implemented in a new R packaged called mvCircular.
Procedimiento multicriterio-multiobjetivo de planificación energética a comunidades rurales aisladas
Resumo:
La toma de decisiones en el sector energético se torna compleja frente a las disímiles opciones y objetivos a cumplir. Para minimizar esta complejidad, se han venido desarrollando una gama amplia de métodos de apoyo a la toma de decisiones en proyectos energéticos. En la última década, las energización de comunidades rurales aisladas ha venido siendo prioridad de muchos gobiernos para mitigar las migraciones del campo para la ciudad. Para la toma de decisiones en los proyectos energéticos de comunidades rurales aisladas se necesitan proyectar la influencia que estos tendrás sobre los costes económicos, medioambientales y sociales. Es por esta razón que el presente trabajo tuvo como objetivo diseñar un modelo original denominado Generación Energética Autóctona Y Limpia (GEAYL) aplicado a una comunidad rural aislada de la provincia de Granma en Cuba. Este modelo parte dos modelos que le preceden el PAMER y el SEMA. El modelo GEAYL constituye un procedimiento multicriterio-multiobjetivo de apoyo a la planificación energética para este contexto. Se plantearon cinco funciones objetivos: F1, para la minimización de los costes energéticos; F2 para la minimización de las emisiones de CO2, F3, para la minimización de las emisiones de NOx; F4, para la minimización de las emisiones de SOx (cuyos coeficientes fueron obtenidos a través de la literatura especializada) y F5, para la maximización de la Aceptación Social de la Energía. La función F5 y la manera de obtener sus coeficientes constituye la novedad del presente trabajo. Estos coeficientes se determinaron aplicando el método AHP (Proceso Analítico Jerárquico) con los datos de partidas derivados de una encuesta a los usuarios finales de la energía y a expertos. Para determinar el suministro óptimo de energía se emplearon varios métodos: la suma ponderada, el producto ponderado, las distancias de Manhattan L1, la distancia Euclidea L2 y la distancia L3. Para estas métricas se aplicaron distintos vectores de pesos para determinar las distintas estructuras de preferencias de los decisores. Finalmente, se concluyó que tener en consideración a Aceptación Social de la Energía como una función del modelo influye en el suministro de energía de cada alternativa energética. ABSTRACT Energy planning decision making is a complex task due to the multiple options to follow and objectives to meet. In order to minimize this complexity, a wide variety of methods and supporting tools have been designed. Over the last decade, rural energization has been a priority for many governments, aiming to alleviate rural to urban migration. Rural energy planning decision making must rely on financial, environmental and social costs. The purpose of this work is to define an original energy planning model named Clean and Native Energy Generation (Generación Energética Autóctona Y Limpia, GEAYL), and carry out a case study on Granma Province, Cuba. This model is based on two previous models: PAMER & SEMA. GEAYL is a multiobjective-multicriteria energy planning model, which includes five functions to be optimized: F1, to minimize financial costs; F2, to minimize CO2 emissions; F3, to minimize NOx emissions; F4, to minimize SOx emissions; and F5, to maximize energy Social Acceptability. The coefficients corresponding to the first four functions have been obtained through specialized papers and official data, and the ones belonging to F5 through an Analytic Hierarchy Process (AHP), built as per a statistical enquiry carried out on energy users and experts. F5 and the AHP application are considered to be the novelty of this model. In order to establish the optimal energy supply, several methods have been applied: weighted sum, weighted product, Manhattan distance L1, Euclidean distance L2 and L3. Several weight vectors have been applied to the mentioned distances in order to conclude the decision makers potential preference structure. Among the conclusions of this work, it must be noted that function F5, Social Acceptability, has a clear influence on every energy supply alternative.
Resumo:
BACKGROUND: The effect of regulated deficit irrigation (RDI) on the phytoprostane (PhytoP) content in extra virgin olive (Olea europaea L., cv. Cornicabra) oil (EVOO) was studied. During the 2012 and 2013 seasons, T0 plants were irrigated at 100% ETc, while T1 and T2 plants were irrigated avoiding water deficit during phases I and III of fruit growth and saving water during the non-critical phenological period of pit hardening (phase II), developing amore severewater deficit in T2 plants. In 2013, a fourth treatment (T3) was also performed, which was similar to T2 except that water saving was from the beginning of phase II to 15 days after the end of phase II. RESULTS: 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP, 9-epi-9-D1t-PhytoP, 9-D1t-PhytoP, 16-B1-PhytoP and 9-L1-PhytoP were present in Cornicabra EVOO, and their contents increased in the EVOO fromRDI plants. CONCLUSION: Deficit irrigation during pit hardening or for a further period of 2 weeks thereafter to increase irrigation water saving is clearly critical for EVOO composition because of the enhancement of free PhytoPs, which have potential beneficial effects on human health. The response of individual free PhytoPs to changes in plant water status was not as perceptible as expected, preventing their use as biomarkers of water stress.