14 resultados para XML, Schema matching

em Universidad Politécnica de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A día de hoy, XML (Extensible Markup Language) es uno de los formatos más utilizados para el intercambio y almacenamiento de información estructurada en la World Wide Web. Es habitual que las aplicaciones que utilizan archivos XML presupongan en ellos una estructura determinada, pudiendo producirse errores si se intentase emplear documentos que no la cumplan. A fin de poder expresar este tipo de limitaciones y poder verificar que un documento las cumple, se definió en el mismo estándar XML el DTD, si bien pronto se mostró bastante limitado en cuanto a su capacidad expresiva. Es por este motivo que se decidió crear el XML Schema, un lenguaje XML para definir qué estructura deben tener otros documentos XML. Contar con un esquema tiene múltiples ventajas, siendo la principal de ellas el poder validar documentos contra él para comprobar si su estructura es correcta u otras como la generación automática de código. Sin embargo, definir una estructura común a varios documentos XML de una manera óptima puede convertirse en una tarea ardua si se hace de manera manual. Este problema puede salvarse contando con una herramienta que automatice el proceso de creación de dichos XSDs. En este proyecto, desarrollaremos una herramienta en Java que, a partir de una serie de documentos XML de entrada, inferirá automáticamente un esquema contra el que validen todos ellos, expresando su estructura de manera completa y concisa. Dicha herramienta permitirá elegir varios parámetros de inferencia, a fin de que el esquema generado se adapte lo más posible a los propósitos del usuario. Esta herramienta generará también una serie de estadísticas adicionales, que permitirán conocer más información sobre los ficheros de entrada.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La evolución de las redes eléctricas se dirige hacia lo que se conoce como “Smart Grids” o “Redes Eléctricas Inteligentes”. Estas “Smart Grids” se componen de subestaciones eléctricas, que a su vez se componen de unos dispositivos llamados IEDs (Dispositivos Electrónicos Inteligentes – Intelligent Electronic Devices). El diseño de IEDs se encuentra definido en la norma IEC 61850, que especifica además un Lenguaje de Configuración de Subestaciones (Substation Configuration Language SCL) para la definición de la configuración de subestaciones y sus IEDs. Hoy en día, este estándar internacional no sólo se utiliza para diseñar correctamente IEDs y asegurar su interoperabilidad, sino que también se utiliza para el diseño de otros dispositivos de la red eléctrica, como por ejemplo, medidores inteligentes. Sin embargo, aunque existe una tendencia cada vez mayor del uso de este estándar, la comprensión y el manejo del mismo resulta difícil debido al gran volumen de información que lo compone y del nivel de detalle que utiliza, por lo que su uso para el diseño de IEDs se hace tedioso sin la ayuda de un soporte software. Es por ello que, para facilitar la aplicación del estándar IEC 61850 en el diseño de IEDs se han desarrollado herramientas como “Visual SCL”, “SCL Explorer” o “61850 SCLVisual Design Tool”. En concreto, “61850 SCLVisual Design Tool” es una herramienta gráfica para el modelado de subestaciones electricas, generada mediante el uso de los frameworks Eclipse Modeling Framework (EMF) y Epsilon Generative Modeling Technologies (GMT) y desarrollada por el grupo de investigación SYST de la UPM. El objetivo de este proyecto es añadir una nueva funcionalidad a la herramienta “61850 Visual SCL DesignTool”. Esta nueva funcionalidad consiste en la generación automática de un fichero de configuración de subestaciones eléctricas según el estándar IEC 61850 a partir de de una herramienta de diseño gráfico. Este fichero, se denomina SCD (Substation Configuration Description), y se trata de un fichero XML conforme a un esquema XSD (XML Schema Definition) mediante el que se define el lenguaje de configuración de subestaciones SCL del IEC 61850. Para el desarrollo de este proyecto, es necesario el estudio del lenguaje para la configuración de subestaciones SCL, así como del lenguaje gráfico específico de dominio definido por la herramienta “61850 SCLVisual Design Tool”, la estructura de los ficheros SCD, y finalmente, del lenguaje EGL (Epsilon Generation Language) para la transformación y generación automática de código a partir de modelos EMF. ABSTRACT Electrical networks are evolving to “Smart Grids”. Smart Grids are composed of electrical substations that in turn are composed of devices called IEDs (Intelligent Electronic Devices). The design of IEDs is defined by the IEC 61850 standard, which also specifies a Substation Configuration Languaje (SCL) used to define the configuration of substations and their IEDs. Nowadays, this international standard is not only used to design properly IEDs and guarantee their interoperability, but it is also used to design different electrical network devices, such as, smart meters. However, although the use of this standard is growing, its compression as well as its management, is still difficult due to its large volume of information and its level of detail. As a result, designing IEDs becomes a tedious task without a software support. As a consequence of this, in order to make easier the application of the IEC 61850 standard while designing IEDs, some software tools have been developed, such as: “Visual SCL”, “SCL Explorer” or “61850 SCLVisual Design Tool”. In particular, “61850 SCLVisual Design Tool” is a graphical tool used to make electrical substations models, and developed with the Eclipse Modeling Framework (EMF) and Epsilon Generative Modeling Technologies (GMT) by the research group SYST of the UPM. The aim of this project is to add a new functionality to “61850 Visual SCL DesignTool”. This new functionality consists of the automatic code generation of a substation configuration file according to the IEC 61850 standard. This file is called SCD (Substation Configuration Description), and it is a XML file that follows a XSD (XML Schema Definition) that defines the Substation Configuration Language (SCL) of the IEC 61850. In order to develop this project, it is necessary to study the Substation Configuration Language (SCL), the domain-specific graphical languaje defined by the tool “61850 SCLVisual Design Tool”, the structure of a SCD file, and the Epsilon Generation Language (EGL) used for the automatic code generation from EMF models

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web 1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs. These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools. Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate. However, linguistic annotation tools have still some limitations, which can be summarised as follows: 1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.). 2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts. 3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc. A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved. In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool. Therefore, it would be quite useful to find a way to (i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools; (ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate. Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned. Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section. 2. GOALS OF THE PRESENT WORK As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based triples, as in the usual Semantic Web languages (namely RDF(S) and OWL), in order for the model to be considered suitable for the Semantic Web. Besides, to be useful for the Semantic Web, this model should provide a way to automate the annotation of web pages. As for the present work, this requirement involved reusing the linguistic annotation tools purchased by the OEG research group (http://www.oeg-upm.net), but solving beforehand (or, at least, minimising) some of their limitations. Therefore, this model had to minimise these limitations by means of the integration of several linguistic annotation tools into a common architecture. Since this integration required the interoperation of tools and their annotations, ontologies were proposed as the main technological component to make them effectively interoperate. From the very beginning, it seemed that the formalisation of the elements and the knowledge underlying linguistic annotations within an appropriate set of ontologies would be a great step forward towards the formulation of such a model (henceforth referred to as OntoTag). Obviously, first, to combine the results of the linguistic annotation tools that operated at the same level, their annotation schemas had to be unified (or, preferably, standardised) in advance. This entailed the unification (id. standardisation) of their tags (both their representation and their meaning), and their format or syntax. Second, to merge the results of the linguistic annotation tools operating at different levels, their respective annotation schemas had to be (a) made interoperable and (b) integrated. And third, in order for the resulting annotations to suit the Semantic Web, they had to be specified by means of an ontology-based vocabulary, and structured by means of ontology-based triples, as hinted above. Therefore, a new annotation scheme had to be devised, based both on ontologies and on this type of triples, which allowed for the combination and the integration of the annotations of any set of linguistic annotation tools. This annotation scheme was considered a fundamental part of the model proposed here, and its development was, accordingly, another major objective of the present work. All these goals, aims and objectives could be re-stated more clearly as follows: Goal 1: Development of a set of ontologies for the formalisation of the linguistic knowledge relating linguistic annotation. Sub-goal 1.1: Ontological formalisation of the EAGLES (1996a; 1996b) de facto standards for morphosyntactic and syntactic annotation, in a way that helps respect the triple structure recommended for annotations in these works (which is isomorphic to the triple structures used in the context of the Semantic Web). Sub-goal 1.2: Incorporation into this preliminary ontological formalisation of other existing standards and standard proposals relating the levels mentioned above, such as those currently under development within ISO/TC 37 (the ISO Technical Committee dealing with Terminology, which deals also with linguistic resources and annotations). Sub-goal 1.3: Generalisation and extension of the recommendations in EAGLES (1996a; 1996b) and ISO/TC 37 to the semantic level, for which no ISO/TC 37 standards have been developed yet. Sub-goal 1.4: Ontological formalisation of the generalisations and/or extensions obtained in the previous sub-goal as generalisations and/or extensions of the corresponding ontology (or ontologies). Sub-goal 1.5: Ontological formalisation of the knowledge required to link, combine and unite the knowledge represented in the previously developed ontology (or ontologies). Goal 2: Development of OntoTag’s annotation scheme, a standard-based abstract scheme for the hybrid (linguistically-motivated and ontological-based) annotation of texts. Sub-goal 2.1: Development of the standard-based morphosyntactic annotation level of OntoTag’s scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996a) and also the recommendations included in the ISO/MAF (2008) standard draft. Sub-goal 2.2: Development of the standard-based syntactic annotation level of the hybrid abstract scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996b) and the ISO/SynAF (2010) standard draft. Sub-goal 2.3: Development of the standard-based semantic annotation level of OntoTag’s (abstract) scheme. Sub-goal 2.4: Development of the mechanisms for a convenient integration of the three annotation levels already mentioned. These mechanisms should take into account the recommendations included in the ISO/LAF (2009) standard draft. Goal 3: Design of OntoTag’s (abstract) annotation architecture, an abstract architecture for the hybrid (semantic) annotation of texts (i) that facilitates the integration and interoperation of different linguistic annotation tools, and (ii) whose results comply with OntoTag’s annotation scheme. Sub-goal 3.1: Specification of the decanting processes that allow for the classification and separation, according to their corresponding levels, of the results of the linguistic tools annotating at several different levels. Sub-goal 3.2: Specification of the standardisation processes that allow (a) complying with the standardisation requirements of OntoTag’s annotation scheme, as well as (b) combining the results of those linguistic tools that share some level of annotation. Sub-goal 3.3: Specification of the merging processes that allow for the combination of the output annotations and the interoperation of those linguistic tools that share some level of annotation. Sub-goal 3.4: Specification of the merge processes that allow for the integration of the results and the interoperation of those tools performing their annotations at different levels. Goal 4: Generation of OntoTagger’s schema, a concrete instance of OntoTag’s abstract scheme for a concrete set of linguistic annotations. These linguistic annotations result from the tools and the resources available in the research group, namely • Bitext’s DataLexica (http://www.bitext.com/EN/datalexica.asp), • LACELL’s (POS) tagger (http://www.um.es/grupos/grupo-lacell/quees.php), • Connexor’s FDG (http://www.connexor.eu/technology/machinese/glossary/fdg/), and • EuroWordNet (Vossen et al., 1998). This schema should help evaluate OntoTag’s underlying hypotheses, stated below. Consequently, it should implement, at least, those levels of the abstract scheme dealing with the annotations of the set of tools considered in this implementation. This includes the morphosyntactic, the syntactic and the semantic levels. Goal 5: Implementation of OntoTagger’s configuration, a concrete instance of OntoTag’s abstract architecture for this set of linguistic tools and annotations. This configuration (1) had to use the schema generated in the previous goal; and (2) should help support or refute the hypotheses of this work as well (see the next section). Sub-goal 5.1: Implementation of the decanting processes that facilitate the classification and separation of the results of those linguistic resources that provide annotations at several different levels (on the one hand, LACELL’s tagger operates at the morphosyntactic level and, minimally, also at the semantic level; on the other hand, FDG operates at the morphosyntactic and the syntactic levels and, minimally, at the semantic level as well). Sub-goal 5.2: Implementation of the standardisation processes that allow (i) specifying the results of those linguistic tools that share some level of annotation according to the requirements of OntoTagger’s schema, as well as (ii) combining these shared level results. In particular, all the tools selected perform morphosyntactic annotations and they had to be conveniently combined by means of these processes. Sub-goal 5.3: Implementation of the merging processes that allow for the combination (and possibly the improvement) of the annotations and the interoperation of the tools that share some level of annotation (in particular, those relating the morphosyntactic level, as in the previous sub-goal). Sub-goal 5.4: Implementation of the merging processes that allow for the integration of the different standardised and combined annotations aforementioned, relating all the levels considered. Sub-goal 5.5: Improvement of the semantic level of this configuration by adding a named entity recognition, (sub-)classification and annotation subsystem, which also uses the named entities annotated to populate a domain ontology, in order to provide a concrete application of the present work in the two areas involved (the Semantic Web and Corpus Linguistics). 3. MAIN RESULTS: ASSESSMENT OF ONTOTAG’S UNDERLYING HYPOTHESES The model developed in the present thesis tries to shed some light on (i) whether linguistic annotation tools can effectively interoperate; (ii) whether their results can be combined and integrated; and, if they can, (iii) how they can, respectively, interoperate and be combined and integrated. Accordingly, several hypotheses had to be supported (or rejected) by the development of the OntoTag model and OntoTagger (its implementation). The hypotheses underlying OntoTag are surveyed below. Only one of the hypotheses (H.6) was rejected; the other five could be confirmed. H.1 The annotations of different levels (or layers) can be integrated into a sort of overall, comprehensive, multilayer and multilevel annotation, so that their elements can complement and refer to each other. • CONFIRMED by the development of: o OntoTag’s annotation scheme, o OntoTag’s annotation architecture, o OntoTagger’s (XML, RDF, OWL) annotation schemas, o OntoTagger’s configuration. H.2 Tool-dependent annotations can be mapped onto a sort of tool-independent annotations and, thus, can be standardised. • CONFIRMED by means of the standardisation phase incorporated into OntoTag and OntoTagger for the annotations yielded by the tools. H.3 Standardisation should ease: H.3.1: The interoperation of linguistic tools. H.3.2: The comparison, combination (at the same level and layer) and integration (at different levels or layers) of annotations. • H.3 was CONFIRMED by means of the development of OntoTagger’s ontology-based configuration: o Interoperation, comparison, combination and integration of the annotations of three different linguistic tools (Connexor’s FDG, Bitext’s DataLexica and LACELL’s tagger); o Integration of EuroWordNet-based, domain-ontology-based and named entity annotations at the semantic level. o Integration of morphosyntactic, syntactic and semantic annotations. H.4 Ontologies and Semantic Web technologies (can) play a crucial role in the standardisation of linguistic annotations, by providing consensual vocabularies and standardised formats for annotation (e.g., RDF triples). • CONFIRMED by means of the development of OntoTagger’s RDF-triple-based annotation schemas. H.5 The rate of errors introduced by a linguistic tool at a given level, when annotating, can be reduced automatically by contrasting and combining its results with the ones coming from other tools, operating at the same level. However, these other tools might be built following a different technological (stochastic vs. rule-based, for example) or theoretical (dependency vs. HPS-grammar-based, for instance) approach. • CONFIRMED by the results yielded by the evaluation of OntoTagger. H.6 Each linguistic level can be managed and annotated independently. • REJECTED: OntoTagger’s experiments and the dependencies observed among the morphosyntactic annotations, and between them and the syntactic annotations. In fact, Hypothesis H.6 was already rejected when OntoTag’s ontologies were developed. We observed then that several linguistic units stand on an interface between levels, belonging thereby to both of them (such as morphosyntactic units, which belong to both the morphological level and the syntactic level). Therefore, the annotations of these levels overlap and cannot be handled independently when merged into a unique multileveled annotation. 4. OTHER MAIN RESULTS AND CONTRIBUTIONS First, interoperability is a hot topic for both the linguistic annotation community and the whole Computer Science field. The specification (and implementation) of OntoTag’s architecture for the combination and integration of linguistic (annotation) tools and annotations by means of ontologies shows a way to make these different linguistic annotation tools and annotations interoperate in practice. Second, as mentioned above, the elements involved in linguistic annotation were formalised in a set (or network) of ontologies (OntoTag’s linguistic ontologies). • On the one hand, OntoTag’s network of ontologies consists of − The Linguistic Unit Ontology (LUO), which includes a mostly hierarchical formalisation of the different types of linguistic elements (i.e., units) identifiable in a written text; − The Linguistic Attribute Ontology (LAO), which includes also a mostly hierarchical formalisation of the different types of features that characterise the linguistic units included in the LUO; − The Linguistic Value Ontology (LVO), which includes the corresponding formalisation of the different values that the attributes in the LAO can take; − The OIO (OntoTag’s Integration Ontology), which  Includes the knowledge required to link, combine and unite the knowledge represented in the LUO, the LAO and the LVO;  Can be viewed as a knowledge representation ontology that describes the most elementary vocabulary used in the area of annotation. • On the other hand, OntoTag’s ontologies incorporate the knowledge included in the different standards and recommendations for linguistic annotation released so far, such as those developed within the EAGLES and the SIMPLE European projects or by the ISO/TC 37 committee: − As far as morphosyntactic annotations are concerned, OntoTag’s ontologies formalise the terms in the EAGLES (1996a) recommendations and their corresponding terms within the ISO Morphosyntactic Annotation Framework (ISO/MAF, 2008) standard; − As for syntactic annotations, OntoTag’s ontologies incorporate the terms in the EAGLES (1996b) recommendations and their corresponding terms within the ISO Syntactic Annotation Framework (ISO/SynAF, 2010) standard draft; − Regarding semantic annotations, OntoTag’s ontologies generalise and extend the recommendations in EAGLES (1996a; 1996b) and, since no stable standards or standard drafts have been released for semantic annotation by ISO/TC 37 yet, they incorporate the terms in SIMPLE (2000) instead; − The terms coming from all these recommendations and standards were supplemented by those within the ISO Data Category Registry (ISO/DCR, 2008) and also of the ISO Linguistic Annotation Framework (ISO/LAF, 2009) standard draft when developing OntoTag’s ontologies. Third, we showed that the combination of the results of tools annotating at the same level can yield better results (both in precision and in recall) than each tool separately. In particular, 1. OntoTagger clearly outperformed two of the tools integrated into its configuration, namely DataLexica and FDG in all the combination sub-phases in which they overlapped (i.e. POS tagging, lemma annotation and morphological feature annotation). As far as the remaining tool is concerned, i.e. LACELL’s tagger, it was also outperformed by OntoTagger in POS tagging and lemma annotation, and it did not behave better than OntoTagger in the morphological feature annotation layer. 2. As an immediate result, this implies that a) This type of combination architecture configurations can be applied in order to improve significantly the accuracy of linguistic annotations; and b) Concerning the morphosyntactic level, this could be regarded as a way of constructing more robust and more accurate POS tagging systems. Fourth, Semantic Web annotations are usually performed by humans or else by machine learning systems. Both of them leave much to be desired: the former, with respect to their annotation rate; the latter, with respect to their (average) precision and recall. In this work, we showed how linguistic tools can be wrapped in order to annotate automatically Semantic Web pages using ontologies. This entails their fast, robust and accurate semantic annotation. As a way of example, as mentioned in Sub-goal 5.5, we developed a particular OntoTagger module for the recognition, classification and labelling of named entities, according to the MUC and ACE tagsets (Chinchor, 1997; Doddington et al., 2004). These tagsets were further specified by means of a domain ontology, namely the Cinema Named Entities Ontology (CNEO). This module was applied to the automatic annotation of ten different web pages containing cinema reviews (that is, around 5000 words). In addition, the named entities annotated with this module were also labelled as instances (or individuals) of the classes included in the CNEO and, then, were used to populate this domain ontology. • The statistical results obtained from the evaluation of this particular module of OntoTagger can be summarised as follows. On the one hand, as far as recall (R) is concerned, (R.1) the lowest value was 76,40% (for file 7); (R.2) the highest value was 97, 50% (for file 3); and (R.3) the average value was 88,73%. On the other hand, as far as the precision rate (P) is concerned, (P.1) its minimum was 93,75% (for file 4); (R.2) its maximum was 100% (for files 1, 5, 7, 8, 9, and 10); and (R.3) its average value was 98,99%. • These results, which apply to the tasks of named entity annotation and ontology population, are extraordinary good for both of them. They can be explained on the basis of the high accuracy of the annotations provided by OntoTagger at the lower levels (mainly at the morphosyntactic level). However, they should be conveniently qualified, since they might be too domain- and/or language-dependent. It should be further experimented how our approach works in a different domain or a different language, such as French, English, or German. • In any case, the results of this application of Human Language Technologies to Ontology Population (and, accordingly, to Ontological Engineering) seem very promising and encouraging in order for these two areas to collaborate and complement each other in the area of semantic annotation. Fifth, as shown in the State of the Art of this work, there are different approaches and models for the semantic annotation of texts, but all of them focus on a particular view of the semantic level. Clearly, all these approaches and models should be integrated in order to bear a coherent and joint semantic annotation level. OntoTag shows how (i) these semantic annotation layers could be integrated together; and (ii) they could be integrated with the annotations associated to other annotation levels. Sixth, we identified some recommendations, best practices and lessons learned for annotation standardisation, interoperation and merge. They show how standardisation (via ontologies, in this case) enables the combination, integration and interoperation of different linguistic tools and their annotations into a multilayered (or multileveled) linguistic annotation, which is one of the hot topics in the area of Linguistic Annotation. And last but not least, OntoTag’s annotation scheme and OntoTagger’s annotation schemas show a way to formalise and annotate coherently and uniformly the different units and features associated to the different levels and layers of linguistic annotation. This is a great scientific step ahead towards the global standardisation of this area, which is the aim of ISO/TC 37 (in particular, Subcommittee 4, dealing with the standardisation of linguistic annotations and resources).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, the Semantic Web has experienced significant advancements in standards and techniques, as well as in the amount of semantic information available online. Nevertheless, mechanisms are still needed to automatically reconcile information when it is expressed in different natural languages on the Web of Data, in order to improve the access to semantic information across language barriers. In this context several challenges arise [1], such as: (i) ontology translation/localization, (ii) cross-lingual ontology mappings, (iii) representation of multilingual lexical information, and (iv) cross-lingual access and querying of linked data. In the following we will focus on the second challenge, which is the necessity of establishing, representing and storing cross-lingual links among semantic information on the Web. In fact, in a “truly” multilingual Semantic Web, semantic data with lexical representations in one natural language would be mapped to equivalent or related information in other languages, thus making navigation across multilingual information possible for software agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present the MultiFarm dataset, which has been designed as a benchmark for multilingual ontology matching. The MultiFarm dataset is composed of a set of ontologies translated in different languages and the corresponding alignments between these ontologies. It is based on the OntoFarm dataset, which has been used successfully for several years in the Ontology Alignment Evaluation Initiative (OAEI). By translating the ontologies of the OntoFarm dataset into eight different languages – Chinese, Czech, Dutch, French, German, Portuguese, Russian, and Spanish – we created a comprehensive set of realistic test cases. Based on these test cases, it is possible to evaluate and compare the performance of matching approaches with a special focus on multilingualism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes an encapsulation scheme aimed at simplifying the reuse process of hardware cores. This hardware encapsulation approach has been conceived with a twofold objective. First, we look for the improvement of the reuse interface associated with the hardware core description. This is carried out in a first encapsulation level by improving the limited types and configuration options available in the conventional HDLs interface, and also providing information related to the implementation itself. Second, we have devised a more generic interface focused on describing the function avoiding details from a particular implementation, what corresponds to a second encapsulation level. This encapsulation allows the designer to define how to configure and use the design to implement a given functionality. The proposed encapsulation schemes help improving the amount of information that can be supplied with the design, and also allow to automate the process of searching, configuring and implementing diverse alternatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the simulation and characterization of an ultrasonic transducer using a new material called Rexolite to be used as a matching element. This transducer was simulated using a commercial piezoelectric ceramic PIC255 at 8 MHz. Rexolite, the new material, presents an excellent acoustic matching, specially in terms of the acoustic impedance of water. Finite elements simulations were used in this work. Rexolite was considered as a suitable material in the construction of the transducer due to its malleability and acoustic properties, to validate the simulations a prototype transducer was constructed. Experimental measurements were used to determine the resonance frequency of the prototype transducer. Simulated and experimental results were very similar showing that Rexolite may be an excellent matching, particularly for medical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of semantic and Linked Data technologies for Enterprise Application Integration (EAI) is increasing in recent years. Linked Data and Semantic Web technologies such as the Resource Description Framework (RDF) data model provide several key advantages over the current de-facto Web Service and XML based integration approaches. The flexibility provided by representing the data in a more versatile RDF model using ontologies enables avoiding complex schema transformations and makes data more accessible using Web standards, preventing the formation of data silos. These three benefits represent an edge for Linked Data-based EAI. However, work still has to be performed so that these technologies can cope with the particularities of the EAI scenarios in different terms, such as data control, ownership, consistency, or accuracy. The first part of the paper provides an introduction to Enterprise Application Integration using Linked Data and the requirements imposed by EAI to Linked Data technologies focusing on one of the problems that arise in this scenario, the coreference problem, and presents a coreference service that supports the use of Linked Data in EAI systems. The proposed solution introduces the use of a context that aggregates a set of related identities and mappings from the identities to different resources that reside in distinct applications and provide different views or aspects of the same entity. A detailed architecture of the Coreference Service is presented explaining how it can be used to manage the contexts, identities, resources, and applications which they relate to. The paper shows how the proposed service can be utilized in an EAI scenario using an example involving a dashboard that integrates data from different systems and the proposed workflow for registering and resolving identities. As most enterprise applications are driven by business processes and involve legacy data, the proposed approach can be easily incorporated into enterprise applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of aerial imagery, one of the first steps toward a coherent processing of the information contained in multiple images is geo-registration, which consists in assigning geographic 3D coordinates to the pixels of the image. This enables accurate alignment and geo-positioning of multiple images, detection of moving objects and fusion of data acquired from multiple sensors. To solve this problem there are different approaches that require, in addition to a precise characterization of the camera sensor, high resolution referenced images or terrain elevation models, which are usually not publicly available or out of date. Building upon the idea of developing technology that does not need a reference terrain elevation model, we propose a geo-registration technique that applies variational methods to obtain a dense and coherent surface elevation model that is used to replace the reference model. The surface elevation model is built by interpolation of scattered 3D points, which are obtained in a two-step process following a classical stereo pipeline: first, coherent disparity maps between image pairs of a video sequence are estimated and then image point correspondences are back-projected. The proposed variational method enforces continuity of the disparity map not only along epipolar lines (as done by previous geo-registration techniques) but also across them, in the full 2D image domain. In the experiments, aerial images from synthetic video sequences have been used to validate the proposed technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A real-time large scale part-to-part video matching algorithm, based on the cross correlation of the intensity of motion curves, is proposed with a view to originality recognition, video database cleansing, copyright enforcement, video tagging or video result re-ranking. Moreover, it is suggested how the most representative hashes and distance functions - strada, discrete cosine transformation, Marr-Hildreth and radial - should be integrated in order for the matching algorithm to be invariant against blur, compression and rotation distortions: (R; _) 2 [1; 20]_[1; 8], from 512_512 to 32_32pixels2 and from 10 to 180_. The DCT hash is invariant against blur and compression up to 64x64 pixels2. Nevertheless, although its performance against rotation is the best, with a success up to 70%, it should be combined with the Marr-Hildreth distance function. With the latter, the image selected by the DCT hash should be at a distance lower than 1.15 times the Marr-Hildreth minimum distance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a strategy for solving the feature matching problem in calibrated very wide-baseline camera settings. In this kind of settings, perspective distortion, depth discontinuities and occlusion represent enormous challenges. The proposed strategy addresses them by using geometrical information, specifically by exploiting epipolar-constraints. As a result it provides a sparse number of reliable feature points for which 3D position is accurately recovered. Special features known as junctions are used for robust matching. In particular, a strategy for refinement of junction end-point matching is proposed which enhances usual junction-based approaches. This allows to compute cross-correlation between perfectly aligned plane patches in both images, thus yielding better matching results. Evaluation of experimental results proves the effectiveness of the proposed algorithm in very wide-baseline environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este Proyecto Fin de Grado está enmarcado dentro de las actividades del GRyS (Grupo de Redes y Servicios de Próxima Generación) con las Smart Grids. En la investigación actual sobre Smart Grids se pretenden alcanzar los siguientes objetivos: . Integrar fuentes de energías renovables de manera efectiva. . Aumentar la eficiencia en la gestión de la demanda y suministro de forma dinámica. . Reducir las emisiones de CO2 dando prioridad a fuentes de energía verdes. . Concienciar del consumo de energía mediante la monitorización de dispositivos y servicios. . Estimular el desarrollo de un mercado vanguardista de tecnologías energéticamente eficientes con nuevos modelos de negocio. Dentro del contexto de las Smart Grids, el interés del GRyS se extiende básicamente a la creación de middlewares semánticos y tecnologías afines, como las ontologías de servicios y las bases de datos semánticas. El objetivo de este Proyecto Fin de Grado ha sido diseñar y desarrollar una aplicación para dispositivos con sistema operativo Android, que implementa una interfaz gráfica y los métodos necesarios para obtener y representar información de registro de servicios de una plataforma SOA (Service-Oriented Architecture). La aplicación permite: . Representar información relativa a los servicios y dispositivos registrados en una Smart Grid. . Guardar, cargar y compartir por correo electrónico ficheros HTML con la información anterior. . Representar en un mapa la ubicación de los dispositivos. . Representar medidas (voltaje, temperatura, etc.) en tiempo real. . Aplicar filtros por identificador de dispositivo, modelo o fabricante. . Realizar consultas SPARQL a bases de datos semánticas. . Guardar y cagar consultas SPARQL en ficheros de texto almacenados en la tarjeta SD. La aplicación, desarrollada en Java, es de código libre y hace uso de tecnologías estándar y abiertas como HTML, XML, SPARQL y servicios RESTful. Se ha tenido ocasión de probarla con la infraestructura del proyecto europeo e-Gotham (Sustainable-Smart Grid Open System for the Aggregated Control, Monitoring and Management of Energy), en el que participan 17 socios de 5 países: España, Italia, Estonia, Finlandia y Noruega. En esta memoria se detalla el estudio realizado sobre el Estado del arte y las tecnologías utilizadas en el desarrollo del proyecto, la implementación, diseño y arquitectura de la aplicación, así como las pruebas realizadas y los resultados obtenidos. ABSTRACT. This Final Degree Project is framed within the activities of the GRyS (Grupo de Redes y Servicios de Próxima Generación) with the Smart Grids. Current research on Smart Grids aims to achieve the following objectives: . To effectively integrate renewable energy sources. . To increase management efficiency by dynamically matching demand and supply. . To reduce carbon emissions by giving priority to green energy sources. . To raise energy consumption awareness by monitoring products and services. . To stimulate the development of a leading-edge market for energy-efficient technologies with new business models. Within the context of the Smart Grids, the interest of the GRyS basically extends to the creation of semantic middleware and related technologies, such as service ontologies and semantic data bases. The objective of this Final Degree Project has been to design and develop an application for devices with Android operating system, which implements a graphical interface and methods to obtain and represent services registry information in a Service-Oriented Architecture (SOA) platform. The application allows users to: . Represent information related to services and devices registered in a Smart Grid. . Save, load and share HTML files with the above information by email. . Represent the location of devices on a map. . Represent measures (voltage, temperature, etc.) in real time. . Apply filters by device id, model or manufacturer. . SPARQL query semantic database. . Save and load SPARQL queries in text files stored on the SD card. The application, developed in Java, is open source and uses open standards such as HTML, XML, SPARQL and RESTful services technologies. It has been tested in a real environment using the e-Gotham European project infrastructure (Sustainable-Smart Grid Open System for the Aggregated Control, Monitoring and Management of Energy), which is participated by 17 partners from 5 countries: Spain, Italy, Estonia, Finland and Norway. This report details the study on the State of the art and the technologies used in the development of the project, implementation, design and architecture of the application, as well as the tests performed and the results obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of service oriented architecture has been extensively explored in software engineering, due to the fact that it produces architectures made up of several interconnected modules, easy to reuse when building new systems. This approach to design would be impossible without interconnection mechanisms such as REST (Representationa State Transfer) services, which allow module communication while minimizing coupling. . However, this low coupling brings disadvantages, such as the lack of transparency, which makes it difficult to sistematically create tests without knowledge of the inner working of a system. In this article, we present an automatic error detection system for REST services, based on a statistical analysis over responses produced at multiple service invocations. Thus, a service can be systematically tested without knowing its full specification. The method can find errors in REST services which could not be identified by means of traditional testing methods, and provides limited testing coverage for services whose response format is unknown. It can be also useful as a complement to other testing mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although context could be exploited to improve performance, elasticity and adaptation in most distributed systems that adopt the publish/subscribe (P/S) communication model, only a few researchers have focused on the area of context-aware matching in P/S systems and have explored its implications in domains with highly dynamic context like wireless sensor networks (WSNs) and IoT-enabled applications. Most adopted P/S models are context agnostic or do not differentiate context from the other application data. In this article, we present a novel context-aware P/S model. SilboPS manages context explicitly, focusing on the minimization of network overhead in domains with recurrent context changes related, for example, to mobile ad hoc networks (MANETs). Our approach represents a solution that helps to efficiently share and use sensor data coming from ubiquitous WSNs across a plethora of applications intent on using these data to build context awareness. Specifically, we empirically demonstrate that decoupling a subscription from the changing context in which it is produced and leveraging contextual scoping in the filtering process notably reduces (un)subscription cost per node, while improving the global performance/throughput of the network of brokers without fltering the cost of SIENA-like topology changes.