3 resultados para X ray intensity

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of high intensity X-ray lasers with matter is modeled. A collisional-radiative timedependent module is implemented to study radiation transport in matter from ultrashort and ultraintense X-ray bursts. Inverse bremsstrahlung absorption by free electrons, electron conduction or hydrodynamic effects are not considered. The collisional-radiative system is coupled with the electron distribution evolution treated with a Fokker-Planck approach with additional inelastic terms. The model includes spontaneous emission, resonant photoabsorption, collisional excitation and de-excitation, radiative recombination, photoionization, collisional ionization, three-body recombination, autoionization and dielectronic capture. It is found that for high densities, but still below solid, collisions play an important role and thermalization times are not short enough to ensure a thermal electron distribution. At these densities Maxwellian and non-Maxwellian electron distribution models yield substantial differences in collisional rates, modifying the atomic population dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical X-ray opacities are used in numerous radiative transfer simulations of plasmas at different temperatures and densities, for example astrophysics, fusion, metrology and EUV and X-rays radiation sources. However, there are only a reduced number of laboratories working on the validation of those theoretical results empirically, in particular for high temperature plasmas (mayor que 1eV). One of those limitations comes from the use of broad band EUV- X ray sources to illuminate the plasma which, among other issues, present low reproducibility and repetition rate [1]. Synchrotron radiation facilities are a more appropriate radiation source in that sense, since they provide tunable, reproducible and high resolution photons. Only their ?low? photon intensity for these experiments has prevented researchers to use it for this purpose. However, as new synchrotron facilities improve their photon fluxes, this limitation not longer holds [2]. This work evaluates the experimental requirements to use third generation synchrotron radiation sources for the empirical measurement of opacities of plasmas, proposing a pausible experimental set-up to carry them out. Properties of the laser or discharge generated plasmas to be studied with synchrotron radiation will be discussed in terms of their maximum temperatures, densities and temporal evolution. It will be concluded that there are encouraging reasons to pursue these kind of experiments which will provide with an appropriate benchmark for theoretical opacities

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to provide the necessary methods to register and fuse the endo-epicardial signal intensity (SI) maps extracted from contrast-enhanced magnetic resonance imaging (ceMRI) with X-ray coronary ngiograms using an intrinsic registrationbased algorithm to help pre-planning and guidance of catheterization procedures. Fusion of angiograms with SI maps was treated as a 2D-3D pose estimation, where each image point is projected to a Plücker line, and the screw representation for rigid motions is minimized using a gradient descent method. The resultant transformation is applied to the SI map that is then projected and fused on each angiogram. The proposed method was tested in clinical datasets from 6 patients with prior myocardial infarction. The registration procedure is optionally combined with an iterative closest point algorithm (ICP) that aligns the ventricular contours segmented from two ventriculograms.