21 resultados para Web image search
em Universidad Politécnica de Madrid
Resumo:
xxx
Resumo:
Actualmente existen una gran cantidad de restaurantes diferentes en todo el mundo, tanto por su tipo de comida, especial de cada país o ciudad, como por la forma en que ofrecen sus servicios o por la temática que presentan al público. Cada día, millones de personas buscan el restaurante perfecto donde disfrutar de un desayuno, comida o cena, solos o en compañía de otras personas. A veces no es nada fácil encontrar sitios nuevos a los que ir, alejándonos un poco de la rutina del día a día. O simplemente queremos viajar a otra ciudad o país y no sabemos dónde podemos ir a comer, o dónde encontrar la comida típica. Por otra parte, a veces los propios restaurantes encuentran un poco difícil la tarea de darse a conocer o promocionar su comida. De este planteamiento surge la idea de realizar una aplicación web en la que los restaurantes puedan crear una cuenta y personalizarla para que ésta sea fiel a la imagen del establecimiento, y no una página más entre miles de restaurantes. Además, esta aplicación será el medio perfecto para que las personas puedan buscar ese lugar al que quieren ir a disfrutar de su comida, de una manera rápida y eficaz y todo desde una misma página web. ABSTRACT Currently, there are a huge amount of different restaurants around the world, and they are different for their type of food, which is specific of each country or city, for the way they offer their services or for the thematic they present to the customers. Every day, millions of people search for the perfect restaurant where they can enjoy their breakfast, lunch or dinner, on their own or in company of others. Sometimes it is not easy to find new places to go, getting away from the routine of the day-to-day. Or simply we want to travel to another country or city and we don’t know where we can go out for a meal, or where we can find the typical food. On the other hand, sometimes the restaurants find it hard to make themselves known or to promote their food. From this proposal appears the idea of making a web application where the restaurants could create an account and customize it so it is faithful to the image of the establishment and it is not just one more web page among miles of restaurants. In addition, this application will be the perfect way for people to search that place where they want to go to enjoy their meal, in a fast and efficient way and everything through the same web page.
Resumo:
Interlinking text documents with Linked Open Data enables the Web of Data to be used as background knowledge within document-oriented applications such as search and faceted browsing. As a step towards interconnecting the Web of Documents with the Web of Data, we developed DBpedia Spotlight, a system for automatically annotating text documents with DBpedia URIs. DBpedia Spotlight allows users to congure the annotations to their specic needs through the DBpedia Ontology and quality measures such as prominence, topical pertinence, contextual ambiguity and disambiguation condence. We compare our approach with the state of the art in disambiguation, and evaluate our results in light of three baselines and six publicly available annotation systems, demonstrating the competitiveness of our system. DBpedia Spotlight is shared as open source and deployed as a Web Service freely available for public use.
Resumo:
Enriching knowledge bases with multimedia information makes it possible to complement textual descriptions with visual and audio information. Such complementary information can help users to understand the meaning of assertions, and in general improve the user experience with the knowledge base. In this paper we address the problem of how to enrich ontology instances with candidate images retrieved from existing Web search engines. DBpedia has evolved into a major hub in the Linked Data cloud, interconnecting millions of entities organized under a consistent ontology. Our approach taps into the Wikipedia corpus to gather context information for DBpedia instances and takes advantage of image tagging information when this is available to calculate semantic relatedness between instances and candidate images. We performed experiments with focus on the particularly challenging problem of highly ambiguous names. Both methods presented in this work outperformed the baseline. Our best method leveraged context words from Wikipedia, tags from Flickr and type information from DBpedia to achieve an average precision of 80%.
Resumo:
It has taken more than a decade of intense technical and market developments for mobile Internet to take off as a mass phenomenon. And it has arrived with great intensity: an avalanche of mobile content and applications is now overrunning us. Similar to its wired counterpart, wireless Web users will continuously demand access to data and content in an efficient and user-friendly manner.
Resumo:
Interlinking text documents with Linked Open Data enables the Web of Data to be used as background knowledge within document-oriented applications such as search and faceted browsing. As a step towards interconnecting the Web of Documents with the Web of Data, we developed DBpedia Spotlight, a system for automatically annotating text documents with DBpedia URIs. DBpedia Spotlight allows users to configure the annotations to their specific needs through the DBpedia Ontology and quality measures such as prominence, topical pertinence, contextual ambiguity and disambiguation confidence. We compare our approach with the state of the art in disambiguation, and evaluate our results in light of three baselines and six publicly available annotation systems, demonstrating the competitiveness of our system. DBpedia Spotlight is shared as open source and deployed as a Web Service freely available for public use.
Resumo:
A generic bio-inspired adaptive architecture for image compression suitable to be implemented in embedded systems is presented. The architecture allows the system to be tuned during its calibration phase. An evolutionary algorithm is responsible of making the system evolve towards the required performance. A prototype has been implemented in a Xilinx Virtex-5 FPGA featuring an adaptive wavelet transform core directed at improving image compression for specific types of images. An Evolution Strategy has been chosen as the search algorithm and its typical genetic operators adapted to allow for a hardware friendly implementation. HW/SW partitioning issues are also considered after a high level description of the algorithm is profiled which validates the proposed resource allocation in the device fabric. To check the robustness of the system and its adaptation capabilities, different types of images have been selected as validation patterns. A direct application of such a system is its deployment in an unknown environment during design time, letting the calibration phase adjust the system parameters so that it performs efcient image compression. Also, this prototype implementation may serve as an accelerator for the automatic design of evolved transform coefficients which are later on synthesized and implemented in a non-adaptive system in the final implementation device, whether it is a HW or SW based computing device. The architecture has been built in a modular way so that it can be easily extended to adapt other types of image processing cores. Details on this pluggable component point of view are also given in the paper.
Resumo:
This PhD thesis contributes to the problem of resource and service discovery in the context of the composable web. In the current web, mashup technologies allow developers reusing services and contents to build new web applications. However, developers face a problem of information flood when searching for appropriate services or resources for their combination. To contribute to overcoming this problem, a framework is defined for the discovery of services and resources. In this framework, three levels are defined for performing discovery at content, discovery and agente levels. The content level involves the information available in web resources. The web follows the Representational Stateless Transfer (REST) architectural style, in which resources are returned as representations from servers to clients. These representations usually employ the HyperText Markup Language (HTML), which, along with Content Style Sheets (CSS), describes the markup employed to render representations in a web browser. Although the use of SemanticWeb standards such as Resource Description Framework (RDF) make this architecture suitable for automatic processes to use the information present in web resources, these standards are too often not employed, so automation must rely on processing HTML. This process, often referred as Screen Scraping in the literature, is the content discovery according to the proposed framework. At this level, discovery rules indicate how the different pieces of data in resources’ representations are mapped onto semantic entities. By processing discovery rules on web resources, semantically described contents can be obtained out of them. The service level involves the operations that can be performed on the web. The current web allows users to perform different tasks such as search, blogging, e-commerce, or social networking. To describe the possible services in RESTful architectures, a high-level feature-oriented service methodology is proposed at this level. This lightweight description framework allows defining service discovery rules to identify operations in interactions with REST resources. The discovery is thus performed by applying discovery rules to contents discovered in REST interactions, in a novel process called service probing. Also, service discovery can be performed by modelling services as contents, i.e., by retrieving Application Programming Interface (API) documentation and API listings in service registries such as ProgrammableWeb. For this, a unified model for composable components in Mashup-Driven Development (MDD) has been defined after the analysis of service repositories from the web. The agent level involves the orchestration of the discovery of services and contents. At this level, agent rules allow to specify behaviours for crawling and executing services, which results in the fulfilment of a high-level goal. Agent rules are plans that allow introspecting the discovered data and services from the web and the knowledge present in service and content discovery rules to anticipate the contents and services to be found on specific resources from the web. By the definition of plans, an agent can be configured to target specific resources. The discovery framework has been evaluated on different scenarios, each one covering different levels of the framework. Contenidos a la Carta project deals with the mashing-up of news from electronic newspapers, and the framework was used for the discovery and extraction of pieces of news from the web. Similarly, in Resulta and VulneraNET projects the discovery of ideas and security knowledge in the web is covered, respectively. The service level is covered in the OMELETTE project, where mashup components such as services and widgets are discovered from component repositories from the web. The agent level is applied to the crawling of services and news in these scenarios, highlighting how the semantic description of rules and extracted data can provide complex behaviours and orchestrations of tasks in the web. The main contributions of the thesis are the unified framework for discovery, which allows configuring agents to perform automated tasks. Also, a scraping ontology has been defined for the construction of mappings for scraping web resources. A novel first-order logic rule induction algorithm is defined for the automated construction and maintenance of these mappings out of the visual information in web resources. Additionally, a common unified model for the discovery of services is defined, which allows sharing service descriptions. Future work comprises the further extension of service probing, resource ranking, the extension of the Scraping Ontology, extensions of the agent model, and contructing a base of discovery rules. Resumen La presente tesis doctoral contribuye al problema de descubrimiento de servicios y recursos en el contexto de la web combinable. En la web actual, las tecnologías de combinación de aplicaciones permiten a los desarrolladores reutilizar servicios y contenidos para construir nuevas aplicaciones web. Pese a todo, los desarrolladores afrontan un problema de saturación de información a la hora de buscar servicios o recursos apropiados para su combinación. Para contribuir a la solución de este problema, se propone un marco de trabajo para el descubrimiento de servicios y recursos. En este marco, se definen tres capas sobre las que se realiza descubrimiento a nivel de contenido, servicio y agente. El nivel de contenido involucra a la información disponible en recursos web. La web sigue el estilo arquitectónico Representational Stateless Transfer (REST), en el que los recursos son devueltos como representaciones por parte de los servidores a los clientes. Estas representaciones normalmente emplean el lenguaje de marcado HyperText Markup Language (HTML), que, unido al estándar Content Style Sheets (CSS), describe el marcado empleado para mostrar representaciones en un navegador web. Aunque el uso de estándares de la web semántica como Resource Description Framework (RDF) hace apta esta arquitectura para su uso por procesos automatizados, estos estándares no son empleados en muchas ocasiones, por lo que cualquier automatización debe basarse en el procesado del marcado HTML. Este proceso, normalmente conocido como Screen Scraping en la literatura, es el descubrimiento de contenidos en el marco de trabajo propuesto. En este nivel, un conjunto de reglas de descubrimiento indican cómo los diferentes datos en las representaciones de recursos se corresponden con entidades semánticas. Al procesar estas reglas sobre recursos web, pueden obtenerse contenidos descritos semánticamente. El nivel de servicio involucra las operaciones que pueden ser llevadas a cabo en la web. Actualmente, los usuarios de la web pueden realizar diversas tareas como búsqueda, blogging, comercio electrónico o redes sociales. Para describir los posibles servicios en arquitecturas REST, se propone en este nivel una metodología de alto nivel para descubrimiento de servicios orientada a funcionalidades. Este marco de descubrimiento ligero permite definir reglas de descubrimiento de servicios para identificar operaciones en interacciones con recursos REST. Este descubrimiento es por tanto llevado a cabo al aplicar las reglas de descubrimiento sobre contenidos descubiertos en interacciones REST, en un nuevo procedimiento llamado sondeo de servicios. Además, el descubrimiento de servicios puede ser llevado a cabo mediante el modelado de servicios como contenidos. Es decir, mediante la recuperación de documentación de Application Programming Interfaces (APIs) y listas de APIs en registros de servicios como ProgrammableWeb. Para ello, se ha definido un modelo unificado de componentes combinables para Mashup-Driven Development (MDD) tras el análisis de repositorios de servicios de la web. El nivel de agente involucra la orquestación del descubrimiento de servicios y contenidos. En este nivel, las reglas de nivel de agente permiten especificar comportamientos para el rastreo y ejecución de servicios, lo que permite la consecución de metas de mayor nivel. Las reglas de los agentes son planes que permiten la introspección sobre los datos y servicios descubiertos, así como sobre el conocimiento presente en las reglas de descubrimiento de servicios y contenidos para anticipar contenidos y servicios por encontrar en recursos específicos de la web. Mediante la definición de planes, un agente puede ser configurado para descubrir recursos específicos. El marco de descubrimiento ha sido evaluado sobre diferentes escenarios, cada uno cubriendo distintos niveles del marco. El proyecto Contenidos a la Carta trata de la combinación de noticias de periódicos digitales, y en él el framework se ha empleado para el descubrimiento y extracción de noticias de la web. De manera análoga, en los proyectos Resulta y VulneraNET se ha llevado a cabo un descubrimiento de ideas y de conocimientos de seguridad, respectivamente. El nivel de servicio se cubre en el proyecto OMELETTE, en el que componentes combinables como servicios y widgets se descubren en repositorios de componentes de la web. El nivel de agente se aplica al rastreo de servicios y noticias en estos escenarios, mostrando cómo la descripción semántica de reglas y datos extraídos permiten proporcionar comportamientos complejos y orquestaciones de tareas en la web. Las principales contribuciones de la tesis son el marco de trabajo unificado para descubrimiento, que permite configurar agentes para realizar tareas automatizadas. Además, una ontología de extracción ha sido definida para la construcción de correspondencias y extraer información de recursos web. Asimismo, un algoritmo para la inducción de reglas de lógica de primer orden se ha definido para la construcción y el mantenimiento de estas correspondencias a partir de la información visual de recursos web. Adicionalmente, se ha definido un modelo común y unificado para el descubrimiento de servicios que permite la compartición de descripciones de servicios. Como trabajos futuros se considera la extensión del sondeo de servicios, clasificación de recursos, extensión de la ontología de extracción y la construcción de una base de reglas de descubrimiento.
Resumo:
The goal of the W3C's Media Annotation Working Group (MAWG) is to promote interoperability between multimedia metadata formats on the Web. As experienced by everybody, audiovisual data is omnipresent on today's Web. However, different interaction interfaces and especially diverse metadata formats prevent unified search, access, and navigation. MAWG has addressed this issue by developing an interlingua ontology and an associated API. This article discusses the rationale and core concepts of the ontology and API for media resources. The specifications developed by MAWG enable interoperable contextualized and semantic annotation and search, independent of the source metadata format, and connecting multimedia data to the Linked Data cloud. Some demonstrators of such applications are also presented in this article.
Resumo:
Nowadays, developers of web application mashups face a sheer overwhelming variety and pluralism of web services. Therefore, choosing appropriate web services to achieve specific goals requires a certain amount of knowledge as well as expertise. In order to support users in choosing appropriate web services it is not only important to match their search criteria to a dataset of possible choices but also to rank the results according to their relevance, thus minimizing the time it takes for taking such a choice. Therefore, we investigated six ranking approaches in an empirical manner and compared them to each other. Moreover, we have had a look on how one can combine those ranking algorithms linearly in order to maximize the quality of their outputs.
Resumo:
Este Proyecto Fin de Carrera (PFC) tiene como objetivos el análisis, diseño e implementación de un sistema web que permita a los usuarios familiarizarse con el Índice de Desarrollo Humano (IDH), publicado anualmente por Naciones Unidas, ofreciendo un servicio de gestión y descarga de una aplicación móvil relacionada con dicho índice. La aplicación móvil es un juego educativo basado en preguntas sobre el IDH de los países, desarrollada en paralelo con este proyecto. El servicio web implementado en este proyecto facilita tanto la descarga, administración y actualización de contenidos como la interacción entre los usuarios. El sistema está formado por un servidor web, una base de datos de usuarios y contenidos y un portal web desde el cual puede descargarse la aplicación móvil, realizar consultas sobre estadísticas de juego y conocer el IDH sin necesidad de jugar. El buscador avanzado que ha sido desarrollado para conocer el IDH permite al usuario adquirir destrezas y entrenarse por sí solo para mejorar sus resultados de juego. Los administradores del sistema tienen la capacidad de gestionar el contenido del portal, los usuarios que solicitan darse de alta y la funcionalidad ofrecida, es decir, actualización del juego, foros y noticias. La instalación del sistema implementado en un servidor web ha permitido su verificación exitosa así como la provisión del servicio de información y sensibilización sobre el IDH, actualizado mediante la información de Naciones Unidas, motivación original del proyecto. ABSTRACT This Final Year Project takes as targets the analysis, design and implementation of a web system that allows to the users to familiarize with the Human Development Index (HDI), published annually by United Nations, offering a service of management and download a mobile application associated with that index. The mobile application is an educational game based on questions on the IDH of the countries, developed in parallel with this project. The web service implemented by means of this Project facilitates download, administration and update of contents and the interaction between the users across the cooperative game. The system consists of a web server, a database of users and content and a web portal from which you can download the mobile application, perform queries on game statistics, or discover the HDI without need for play. The advanced search engine that has been developed for the HDI allows the user to purchase and train for skills to improve their game results. System administrators have the ability to manage the content of the portal, users requesting register and the functionality offered, i.e., update to the game, forums and news. The installation of the system that was implemented has allowed successful verification and the provision of an information and awareness on the HDI, updated with the information from the United Nations, original motivation of the project.
Resumo:
This paper presents the main results of the eContent HARMOS project. The project has developed a webbased educational system for professional musicians. The main idea of the project consists of recording master classes taught by highly recognised maestros and annotate this multimedia material using an educational musical taxonomy and automatic annotation tools. Users of the system access a multi-criteria search engine that allows them to find and play video segments according to a combination of criteria, which include instrument, teacher, composer, composition, movement and pedagogical concept. In order to preserve teachers and students rights, a DRM and protection system has been developed. The system is being publicly exploited. This model preserves musical heritage, since these valuable master classes are usually not recorded and it also provides a sustainable model for musical institutions.
Resumo:
The emergence of cloud datacenters enhances the capability of online data storage. Since massive data is stored in datacenters, it is necessary to effectively locate and access interest data in such a distributed system. However, traditional search techniques only allow users to search images over exact-match keywords through a centralized index. These techniques cannot satisfy the requirements of content based image retrieval (CBIR). In this paper, we propose a scalable image retrieval framework which can efficiently support content similarity search and semantic search in the distributed environment. Its key idea is to integrate image feature vectors into distributed hash tables (DHTs) by exploiting the property of locality sensitive hashing (LSH). Thus, images with similar content are most likely gathered into the same node without the knowledge of any global information. For searching semantically close images, the relevance feedback is adopted in our system to overcome the gap between low-level features and high-level features. We show that our approach yields high recall rate with good load balance and only requires a few number of hops.
Resumo:
En la realización de este proyecto se ha tratado principalmente la temática del web scraping sobre documentos HTML en Android. Como resultado del mismo, se ha propuesto una metodología para poder realizar web scraping en aplicaciones implementadas para este sistema operativo y se desarrollará una aplicación basada en esta metodología que resulte útil a los alumnos de la escuela. Web scraping se puede definir como una técnica basada en una serie de algoritmos de búsqueda de contenido con el fin de obtener una determinada información de páginas web, descartando aquella que no sea relevante. Como parte central, se ha dedicado bastante tiempo al estudio de los navegadores y servidores Web, y del lenguaje HTML presente en casi todas las páginas web en la actualidad así como de los mecanismos utilizados para la comunicación entre cliente y servidor ya que son los pilares en los que se basa esta técnica. Se ha realizado un estudio de las técnicas y herramientas necesarias, aportándose todos los conceptos teóricos necesarios, así como la proposición de una posible metodología para su implementación. Finalmente se ha codificado la aplicación UPMdroid, desarrollada con el fin de ejemplificar la implementación de la metodología propuesta anteriormente y a la vez desarrollar una aplicación cuya finalidad es brindar al estudiante de la ETSIST un soporte móvil en Android que le facilite el acceso y la visualización de aquellos datos más importantes del curso académico como son: el horario de clases y las calificaciones de las asignaturas en las que se matricule. Esta aplicación, además de implementar la metodología propuesta, es una herramienta muy interesante para el alumno, ya que le permite utilizar de una forma sencilla e intuitiva gran número de funcionalidades de la escuela solucionando así los problemas de visualización de contenido web en los dispositivos. ABSTRACT. The main topic of this project is about the web scraping over HTML documents on Android OS. As a result thereof, it is proposed a methodology to perform web scraping in deployed applications for this operating system and based on this methodology that is useful to the ETSIST school students. Web scraping can be defined as a technique based on a number of content search algorithms in order to obtain certain information from web pages, discarding those that are not relevant. As a main part, has spent considerable time studying browsers and Web servers, and the HTML language that is present today in almost all websites as well as the mechanisms used for communication between client and server because they are the pillars which this technique is based. We performed a study of the techniques and tools needed, providing all the necessary theoretical concepts, as well as the proposal of a possible methodology for implementation. Finally it has codified UPMdroid application, developed in order to illustrate the implementation of the previously proposed methodology and also to give the student a mobile ETSIST Android support to facilitate access and display those most important data of the current academic year such as: class schedules and scores for the subjects in which you are enrolled. This application, in addition to implement the proposed methodology is also a very interesting tool for the student, as it allows a simple and intuitive way of use these school functionalities thus fixing the viewing web content on devices.
Resumo:
Automatic 2D-to-3D conversion is an important application for filling the gap between the increasing number of 3D displays and the still scant 3D content. However, existing approaches have an excessive computational cost that complicates its practical application. In this paper, a fast automatic 2D-to-3D conversion technique is proposed, which uses a machine learning framework to infer the 3D structure of a query color image from a training database with color and depth images. Assuming that photometrically similar images have analogous 3D structures, a depth map is estimated by searching the most similar color images in the database, and fusing the corresponding depth maps. Large databases are desirable to achieve better results, but the computational cost also increases. A clustering-based hierarchical search using compact SURF descriptors to characterize images is proposed to drastically reduce search times. A significant computational time improvement has been obtained regarding other state-of-the-art approaches, maintaining the quality results.