24 resultados para Wavelet Transform

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is motivated in providing and evaluating a fusion algorithm of remotely sensed images, i.e. the fusion of a high spatial resolution panchromatic image with a multi-spectral image (also known as pansharpening) using the dual-tree complex wavelet transform (DT-CWT), an effective approach for conducting an analytic and oversampled wavelet transform to reduce aliasing, and in turn reduce shift dependence of the wavelet transform. The proposed scheme includes the definition of a model to establish how information will be extracted from the PAN band and how that information will be injected into the MS bands with low spatial resolution. The approach was applied to Spot 5 images where there are bands falling outside PAN’s spectrum. We propose an optional step in the quality evaluation protocol, which is to study the quality of the merger by regions, where each region represents a specific feature of the image. The results show that DT-CWT based approach offers good spatial quality while retaining the spectral information of original images, case SPOT 5. The additional step facilitates the identification of the most affected regions by the fusion process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voice biometry is classically based on the parameterization and patterning of speech features mainly. The present approach is based on the characterization of phonation features instead (glottal features). The intention is to reduce intra-speaker variability due to the `text'. Through the study of larynx biomechanics it may be seen that the glottal correlates constitute a family of 2-nd order gaussian wavelets. The methodology relies in the extraction of glottal correlates (the glottal source) which are parameterized using wavelet techniques. Classification and pattern matching was carried out using Gaussian Mixture Models. Data of speakers from a balanced database and NIST SRE HASR2 were used in verification experiments. Preliminary results are given and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive embedded systems are required in various applications. This work addresses these needs in the area of adaptive image compression in FPGA devices. A simplified version of an evolution strategy is utilized to optimize wavelet filters of a Discrete Wavelet Transform algorithm. We propose an adaptive image compression system in FPGA where optimized memory architecture, parallel processing and optimized task scheduling allow reducing the time of evolution. The proposed solution has been extensively evaluated in terms of the quality of compression as well as the processing time. The proposed architecture reduces the time of evolution by 44% compared to our previous reports while maintaining the quality of compression unchanged with respect to existing implementations. The system is able to find an optimized set of wavelet filters in less than 2 min whenever the input type of data changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wavelet transform and Lipschitz exponent perform well in detecting signal singularity.With the bridge crack damage modeled as rotational springs based on fracture mechanics, the deflection time history of the beam under the moving load is determined with a numerical method. The continuous wavelet transformation (CWT) is applied to the deflection of the beam to identify the location of the damage, and the Lipschitz exponent is used to evaluate the damage degree. The influence of different damage degrees,multiple damage, different sensor locations, load velocity and load magnitude are studied.Besides, the feasibility of this method is verified by a model experiment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A generic bio-inspired adaptive architecture for image compression suitable to be implemented in embedded systems is presented. The architecture allows the system to be tuned during its calibration phase. An evolutionary algorithm is responsible of making the system evolve towards the required performance. A prototype has been implemented in a Xilinx Virtex-5 FPGA featuring an adaptive wavelet transform core directed at improving image compression for specific types of images. An Evolution Strategy has been chosen as the search algorithm and its typical genetic operators adapted to allow for a hardware friendly implementation. HW/SW partitioning issues are also considered after a high level description of the algorithm is profiled which validates the proposed resource allocation in the device fabric. To check the robustness of the system and its adaptation capabilities, different types of images have been selected as validation patterns. A direct application of such a system is its deployment in an unknown environment during design time, letting the calibration phase adjust the system parameters so that it performs efcient image compression. Also, this prototype implementation may serve as an accelerator for the automatic design of evolved transform coefficients which are later on synthesized and implemented in a non-adaptive system in the final implementation device, whether it is a HW or SW based computing device. The architecture has been built in a modular way so that it can be easily extended to adapt other types of image processing cores. Details on this pluggable component point of view are also given in the paper.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hoy en día las técnicas de adquisición de imágenes tridimensionales son comunes en diversas áreas, pero cabe destacar la relevancia que han adquirido en el ámbito de la imagen biomédica, dentro del cual encontramos una amplia gama de técnicas como la microscopía confocal, microscopía de dos fotones, microscopía de fluorescencia mediante lámina de luz, resonancia magnética nuclear, tomografía por emisión de positrones, tomografía de coherencia óptica, ecografía 3D y un largo etcétera. Un denominador común de todas esas aplicaciones es la constante necesidad por aumentar la resolución y la calidad de las imágenes adquiridas. En algunas de dichas técnicas de imagen tridimensional se da una interesante situación: aunque que cada volumen adquirido no contiene información suficiente para representar el objeto bajo estudio dentro de los parámetros de calidad requeridos por algunas aplicaciones finales, el esquema de adquisición permite la obtención de varios volúmenes que representan diferentes vistas de dicho objeto, de tal forma que cada una de las vistas proporciona información complementaria acerca del mismo. En este tipo de situación es posible, mediante la combinación de varias de esas vistas, obtener una mejor comprensión del objeto que a partir de cada una de ellas por separado. En el contexto de esta Tesis Doctoral se ha propuesto, desarrollado y validado una nueva metodología de proceso de imágenes basada en la transformada wavelet disc¬reta para la combinación, o fusión, de varias vistas con información complementaria de un mismo objeto. El método de fusión propuesto aprovecha la capacidad de descom¬posición en escalas y orientaciones de la transformada wavelet discreta para integrar en un solo volumen toda la información distribuida entre el conjunto de vistas adquiridas. El trabajo se centra en dos modalidades diferentes de imagen biomédica que per¬miten obtener tales adquisiciones multi-vista. La primera es una variante de la micro¬scopía de fluorescencia, la microscopía de fluorescencia mediante lámina de luz, que se utiliza para el estudio del desarrollo temprano de embriones vivos en diferentes modelos animales, como el pez cebra o el erizo de mar. La segunda modalidad es la resonancia magnética nuclear con realce tardío, que constituye una valiosa herramienta para evaluar la viabilidad del tejido miocárdico en pacientes con diversas miocardiopatías. Como parte de este trabajo, el método propuesto ha sido aplicado y validado en am¬bas modalidades de imagen. En el caso de la aplicación a microscopía de fluorescencia, los resultados de la fusión muestran un mejor contraste y nivel de detalle en comparación con cualquiera de las vistas individuales y el método no requiere de conocimiento previo acerca la función de dispersión puntual del sistema de imagen. Además, los resultados se han comparado con otros métodos existentes. Con respecto a la aplicación a imagen de resonancia magnética con realce tardío, los volúmenes fusionados resultantes pre-sentan una mejora cuantitativa en la nitidez de las estructuras relevantes y permiten una interpretación más sencilla y completa de la compleja estructura tridimensional del tejido miocárdico en pacientes con cardiopatía isquémica. Para ambas aplicaciones los resultados de esta tesis se encuentran actualmente en uso en los centros clínicos y de investigación con los que el autor ha colaborado durante este trabajo. Además se ha puesto a libre disposición de la comunidad científica la implementación del método de fusión propuesto. Por último, se ha tramitado también una solicitud de patente internacional que cubre el método de visualización desarrollado para la aplicación de Resonancia Magnética Nuclear. Abstract Nowadays three dimensional imaging techniques are common in several fields, but es-pecially in biomedical imaging, where we can find a wide range of techniques including: Laser Scanning Confocal Microscopy, Laser Scanning Two Photon Microscopy, Light Sheet Fluorescence Microscopy, Magnetic Resonance Imaging, Positron Emission To-mography, Optical Coherence Tomography, 3D Ultrasound Imaging, etc. A common denominator of all those applications being the constant need for further increasing resolution and quality of the acquired images. Interestingly, in some of the mentioned three-dimensional imaging techniques a remarkable situation arises: while a single volume does not contain enough information to represent the object being imaged within the quality parameters required by the final application, the acquisition scheme allows recording several volumes which represent different views of a given object, with each of the views providing complementary information. In this kind of situation one can get a better understanding of the object by combining several views instead of looking at each of them separately. Within such context, in this PhD Thesis we propose, develop and test new image processing methodologies based on the discrete wavelet transform for the combination, or fusion, of several views containing complementary information of a given object. The proposed fusion method exploits the scale and orientation decomposition capabil¬ities of the discrete wavelet transform to integrate in a single volume all the available information distributed among the set of acquired views. The work focuses in two different biomedical imaging modalities which provide such multi-view datasets. The first one is a particular fluorescence microscopy technique, Light-Sheet Fluorescence Microscopy, used for imaging and gaining understanding of the early development of live embryos from different animal models (like zebrafish or sea urchin). The second is Delayed Enhancement Magnetic Resonance Imaging, which is a valuable tool for assessing the viability of myocardial tissue on patients suffering from different cardiomyopathies. As part of this work, the proposed method was implemented and then validated on both imaging modalities. For the fluorescence microscopy application, the fusion results show improved contrast and detail discrimination when compared to any of the individual views and the method does not rely on prior knowledge of the system’s point spread function (PSF). Moreover, the results have shown improved performance with respect to previous PSF independent methods. With respect to its application to Delayed Enhancement Magnetic Resonance Imaging, the resulting fused volumes show a quantitative sharpness improvement and enable an easier and more complete interpretation of complex three-dimensional scar and heterogeneous tissue information in ischemic cardiomyopathy patients. In both applications, the results of this thesis are currently in use in the clinical and research centers with which the author collaborated during his work. An imple¬mentation of the fusion method has also been made freely available to the scientific community. Finally, an international patent application has been filed covering the visualization method developed for the Magnetic Resonance Imaging application.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La teledetección o percepción remota (remote sensing) es la ciencia que abarca la obtención de información (espectral, espacial, temporal) sobre un objeto, área o fenómeno a través del análisis de datos adquiridos por un dispositivo que no está en contacto con el elemento estudiado. Los datos obtenidos a partir de la teledetección para la observación de la superficie terrestre comúnmente son imágenes, que se caracterizan por contar con un sinnúmero de aplicaciones que están en continua evolución, por lo cual para solventar los constantes requerimientos de nuevas aplicaciones a menudo se proponen nuevos algoritmos que mejoran o facilitan algún proceso en particular. Para el desarrollo de dichos algoritmos, es preciso hacer uso de métodos matemáticos que permitan la manipulación de la información con algún fin específico. Dentro de estos métodos, el análisis multi-resolución se caracteriza por permitir analizar una señal en diferentes escalas, lo que facilita trabajar con datos que puedan tener resoluciones diferentes, tal es el caso de las imágenes obtenidas mediante teledetección. Una de las alternativas para la implementación de análisis multi-resolución es la Transformada Wavelet Compleja de Doble Árbol (DT-CWT). Esta transformada se implementa a partir de dos filtros reales y se caracteriza por presentar invariancia a traslaciones, precio a pagar por su característica de no ser críticamente muestreada. A partir de las características de la DT-CWT se propone su uso en el diseño de algoritmos de procesamiento de imagen, particularmente imágenes de teledetección. Estos nuevos algoritmos de procesamiento digital de imágenes de teledetección corresponden particularmente a fusión y detección de cambios. En este contexto esta tesis presenta tres algoritmos principales aplicados a fusión, evaluación de fusión y detección de cambios en imágenes. Para el caso de fusión de imágenes, se presenta un esquema general que puede ser utilizado con cualquier algoritmo de análisis multi-resolución; este algoritmo parte de la implementación mediante DT-CWT para luego extenderlo a un método alternativo, el filtro bilateral. En cualquiera de los dos casos la metodología implica que la inyección de componentes pueda realizarse mediante diferentes alternativas. En el caso del algoritmo de evaluación de fusión se presenta un nuevo esquema que hace uso de procesos de clasificación, lo que permite evaluar los resultados del proceso de fusión de forma individual para cada tipo de cobertura de uso de suelo que se defina en el proceso de evaluación. Esta metodología permite complementar los procesos de evaluación tradicionales y puede facilitar el análisis del impacto de la fusión sobre determinadas clases de suelo. Finalmente, los algoritmos de detección de cambios propuestos abarcan dos enfoques. El primero está orientado a la obtención de mapas de sequía en datos multi-temporales a partir de índices espectrales. El segundo enfoque propone la utilización de un índice global de calidad espectral como filtro espacial. La utilización de dicho filtro facilita la comparación espectral global entre dos imágenes, esto unido a la utilización de umbrales, conlleva a la obtención de imágenes diferencia que contienen la información de cambio. ABSTRACT Remote sensing is a science relates to information gathering (spectral, spatial, temporal) about an object, area or phenomenon, through the analysis of data acquired by a device that is not in contact with the studied item. In general, data obtained from remote sensing to observe the earth’s surface are images, which are characterized by having a number of applications that are constantly evolving. Therefore, to solve the constant requirements of applications, new algorithms are proposed to improve or facilitate a particular process. With the purpose of developing these algorithms, each application needs mathematical methods, such as the multiresolution analysis which allows to analyze a signal at different scales. One of the options is the Dual Tree Complex Wavelet Transform (DT-CWT) which is implemented from two real filters and is characterized by invariance to translations. Among the advantages of this transform is its successful application in image fusion and change detection areas. In this regard, this thesis presents three algorithms applied to image fusion, assessment for image fusion and change detection in multitemporal images. For image fusion, it is presented a general outline that can be used with any multiresolution analysis technique; this algorithm is proposed at first with DT-CWT and then extends to an alternative method, the bilateral filter. In either case the method involves injection of components by various means. For fusion assessment, the proposal is focused on a scheme that uses classification processes, which allows evaluating merger results individually for each type of land use coverage that is defined in evaluation process. This methodology allows complementing traditional assessment processes and can facilitate impact analysis of the merger on certain kinds of soil. Finally, two approaches of change detection algorithms are included. The first is aimed at obtaining drought maps in multitemporal data from spectral indices. The second one takes a global index of spectral quality as a spatial filter. The use of this filter facilitates global spectral comparison between two images and by means of thresholding, allows imaging containing change information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most fusion satellite image methodologies at pixel-level introduce false spatial details, i.e.artifacts, in the resulting fusedimages. In many cases, these artifacts appears because image fusion methods do not consider the differences in roughness or textural characteristics between different land covers. They only consider the digital values associated with single pixels. This effect increases as the spatial resolution image increases. To minimize this problem, we propose a new paradigm based on local measurements of the fractal dimension (FD). Fractal dimension maps (FDMs) are generated for each of the source images (panchromatic and each band of the multi-spectral images) with the box-counting algorithm and by applying a windowing process. The average of source image FDMs, previously indexed between 0 and 1, has been used for discrimination of different land covers present in satellite images. This paradigm has been applied through the fusion methodology based on the discrete wavelet transform (DWT), using the à trous algorithm (WAT). Two different scenes registered by optical sensors on board FORMOSAT-2 and IKONOS satellites were used to study the behaviour of the proposed methodology. The implementation of this approach, using the WAT method, allows adapting the fusion process to the roughness and shape of the regions present in the image to be fused. This improves the quality of the fusedimages and their classification results when compared with the original WAT method

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electroencephalograph (EEG) signal is one of the most widely used signals in the biomedicine field due to its rich information about human tasks. This research study describes a new approach based on i) build reference models from a set of time series, based on the analysis of the events that they contain, is suitable for domains where the relevant information is concentrated in specific regions of the time series, known as events. In order to deal with events, each event is characterized by a set of attributes. ii) Discrete wavelet transform to the EEG data in order to extract temporal information in the form of changes in the frequency domain over time- that is they are able to extract non-stationary signals embedded in the noisy background of the human brain. The performance of the model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed scheme has potential in classifying the EEG signals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last recent years, with the popularity of image compression techniques, many architectures have been proposed. Those have been generally based on the Forward and Inverse Discrete Cosine Transform (FDCT, IDCT). Alternatively, compression schemes based on discrete “wavelets” transform (DWT), used, both, in JPEG2000 coding standard and in the next H264-SVC (Scalable Video Coding), do not need to divide the image into non-overlapping blocks or macroblocks. This paper discusses the DLMT (Discrete Lopez-Moreno Transform). It proposes a new scheme intermediate between the DCT and the DWT (Discrete Wavelet Transform). The DLMT is computationally very similar to the DCT and uses quasi-sinusoidal functions, so the emergence of artifact blocks and their effects have a relative low importance. The use of quasi-sinusoidal functions has allowed achieving a multiresolution control quite close to that obtained by a DWT, but without increasing the computational complexity of the transformation. The DLMT can also be applied over a whole image, but this does not involve increasing computational complexity. Simulation results in MATLAB show that the proposed DLMT has significant performance benefits and improvements comparing with the DCT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the current issues of debate in the study of mild cognitive impairment (MCI) is deviations of oscillatory brain responses from normal brain states and its dynamics. This work aims to characterize the differences of power in brain oscillations during the execution of a recognition memory task in MCI subjects in comparison with elderly controls. Magnetoencephalographic (MEG) signals were recorded during a continuous recognition memory task performance. Oscillatory brain activity during the recognition phase of the task was analyzed by wavelet transform in the source space by means of minimum norm algorithm. Both groups obtained a 77% hit ratio. In comparison with healthy controls, MCI subjects showed increased theta (p < 0.001), lower beta reduction (p < 0.001) and decreased alpha and gamma power (p < 0.002 and p < 0.001 respectively) in frontal, temporal and parietal areas during early and late latencies. Our results point towards a dual pattern of activity (increase and decrease) which is indicative of MCI and specific to certain time windows, frequency bands and brain regions. These results could represent two neurophysiological sides of MCI. Characterizing these opposing processes may contribute to the understanding of the disorder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper analyzes the correlation between the fluctuations of the electrical power generated by the ensemble of 70 DC/AC inverters from a 45.6 MW PV plant. The use of real electrical power time series from a large collection of photovoltaic inverters of a same plant is an impor- tant contribution in the context of models built upon simplified assumptions to overcome the absence of such data. This data set is divided into three different fluctuation categories with a clustering proce- dure which performs correctly with the clearness index and the wavelet variances. Afterwards, the time dependent correlation between the electrical power time series of the inverters is esti- mated with the wavelet transform. The wavelet correlation depends on the distance between the inverters, the wavelet time scales and the daily fluctuation level. Correlation values for time scales below one minute are low without dependence on the daily fluctuation level. For time scales above 20 minutes, positive high correlation values are obtained, and the decay rate with the distance depends on the daily fluctuation level. At intermediate time scales the correlation depends strongly on the daily fluctuation level. The proposed methods have been implemented using free software. Source code is available as supplementary material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En esta tesis doctoral se estudian las variaciones de radón en el interior de dos viviendas similares de construcción nueva en Madrid, una de ellas ocupada y la otra no, que forman parte del mismo edificio residencial. La concentración de radón y los parámetros ambientales (presión, temperatura y humedad) se midieron durante ocho meses. La monitorización del gas radón se realizó mediante detectores de estado sólido. Simultáneamente, se adquirieron algunas variables atmosféricas de un modelo atmosférico. En el análisis de los datos, se utilizó principalmente el método de la Transformada Wavelet. Los resultados muestran que el nivel de radón es ligeramente más alto en la vivienda ocupada que en la otra. A partir del análisis desarrollado en este estudio, se encontró que había un patrón específico estacional en la concentración de radón interior. Además, se analizó también la influencia antropogénica. Se pudieron observar patrones periódicos muy similares en intervalos concretos sin importar si la vivienda está ocupada o no. Por otra parte, los datos se almacenaron en cubos OLAP. El análisis se realizó usando unos algoritmos de agrupamiento (clustering) y de asociación. El objetivo es descubrir las relaciones entre el radón y las condiciones externas como la presión, estabilidad, etc. Además, la metodología aplicada puede ser útil para estudios ambientales en donde se mida radón en espacios interiores. ABSTRACT The present thesis studies the indoor radon variations in two similar new dwellings, one of them occupied and the other unoccupied, from the same residential building in Madrid. Radon concentration and ambient parameters were measured during eight months. Solid state detectors were used for the radon monitoring. Simultaneously, several atmospheric variables were acquired from an atmospheric model. In the data analysis, the Wavelet Transform Method was mainly used. The results show that radon level is slightly higher in the unoccupied dwelling than in the other one. From the analysis developed in this study, it is found that a specific seasonal pattern exists in the indoor radon concentration. Besides, the anthropogenic influence is also analysed. Nearly periodical patterns could be observed in specific periods whether dwelling is occupied or not. Otherwise, data were stored in cubes OLAP. Analysis was carried out using clustering and association algorithms. The aim is to find out the relationships among radon and external conditions like pressure, stability, etc. Besides, the methodology could be useful to assess environmental studies, where indoor radon is measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme weather and climate events have received increased attention in the last few years, due to the often large loss of agriculture business and exponentially increasing costs associated with them and insurance planning. This increased attention raises the question as to whether extreme weather and climate events are truly increasing, whether this is only a perceived increase exacerbated by enhanced media coverage, or both. There are a number of ways extreme climate events can be defined, such as extreme daily temperatures, extreme daily rainfall amounts, and large areas experiencing unusually warm monthly temperatures, among others. In this study, we will focus our attention in frost and heatstroke events measuring it as the number of days under 0 ºC and number of days with daily maximum over 30ºC monthly respectively. We have studied the trends in these extreme events applying a Fast Fourier Transform to the series to clarify the tendency. Lack of long-term climate data suitable for analysis of extremes is the single biggest obstacle to quantifying whether extreme events have changed over the twentieth century, including high temporal and spatial resolution observations of temperatures. However, several series have been grouped in different ways: chosen the longest series independently, by provinces, by main watersheds and altitude. On the other hand, synthetic series generated by Luna and Balairón (AEMet) were also analyzed. The results obtained by different pooling data are discussed concluding the difficulties to assess the extreme events tendencies and high regional variation in the trends.