3 resultados para Wave equations

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This contribution presents results of an incompressible two-dimensional flow over an open cavity of fixed aspect ratio (length/depth) L/D = 2 and the coupling between the three dimensional low frequency oscillation mode confined in the cavity and the wave-like disturbances evolving on the downstream wall of the cavity in the form of Tollmien-Schlichting waves. BiGlobal instability analysis is conducted to search the global disturbances superimposed upon a two-dimensional steady basic flow. The base solution is computed by the integration of the laminar Navier-Stokes equations in primitive variable formulation, while the eigenvalue problem (EVP) derived from the discretization of the linearized equations of motion in the BiGlobal framework is solved using an iterative procedure. The formulation of the BiGlobal EVP for the unbounded flow in the open cavity problem introduces additional difficulties regarding the flow-through boundaries. Local analysis has been utilized for the determination of the proper boundary conditions in the upper limit of the downstream region

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple analytical expression has been derived to calculate the characteristics of a wave that reflects at a stent implanted in a uniform vessel. The stent is characterized by its length and the wave velocity in the stented region. The reflected wave is proportional to the time derivative of the incident wave. The reflection coefficient is a small quantity of the order of the length of the stent divided by the wavelength of the unstented vessel. The results obtained coincide with those obtained numerically by Charonko et al. The main simplifications used are small amplitude of the waves so that equations can be linearized and that the length of the stent is small enough so that the values of the wave functions are nearly uniform along the stent. Both assumptions hold in typical situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electro-dynamical tethers emit waves in structured denominated Alfven wings. The Derivative Nonlineal Schrödinger Equation (DNLS) possesses the capacity to describe the propagation of circularly polarized Alfven waves of finite amplitude in cold plasmas. The DNLS equation is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In this article is presented a theoretical and numerical analysis when the growth rate of the unstable wave is next to zero considering two damping models: Landau and resistive. The DNLS equation presents a chaotic dynamics when is consider only three wave truncation. The evolution to chaos possesses three routes: hard transition, period-doubling and intermittence of type I.