53 resultados para Water availability

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The approach developed by Fuhrer in 1995 to estimate wheat yield losses induced by ozone and modulated by the soil water content (SWC) was applied to the data on Catalonian wheat yields. The aim of our work was to apply this approach and adjust it to Mediterranean environmental conditions by means of the necessary corrections. The main objective pursued was to prove the importance of soil water availability in the estimation of relative wheat yield losses as a factor that modifies the effects of tropospheric ozone on wheat, and to develop the algorithms required for the estimation of relative yield losses, adapted to the Mediterranean environmental conditions. The results show that this is an easy way to estimate relative yield losses just using meteorological data, without using ozone fluxes, which are much more difficult to calculate. Soil water availability is very important as a modulating factor of the effects of ozone on wheat; when soil water availability decreases, almost twice the amount of accumulated exposure to ozone is required to induce the same percentage of yield loss as in years when soil water availability is high.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rising water demands are difficult to meet in many regions of the world. In consequence, under meteorological adverse conditions, big economic losses in agriculture can take place. This paper aims to analyze the variability of water shortage in an irrigation district and the effect on farmer?s income. A probabilistic analysis of water availability for agriculture in the irrigation district is performed, through a supply-system simulation approach, considering stochastically generated series of stream-flows. Net margins associated to crop production are as well estimated depending on final water allocations. Net margins are calculated considering either single-crop farming, either a polyculture system. In a polyculture system, crop distribution and water redistribution are calculated through an optimization approach using the General Algebraic Modeling System (GAMS) for several scenarios of irrigation water availability. Expected net margins are obtained by crop and for the optimal crop and water distribution. The maximum expected margins are obtained for the optimal crop combination, followed by the alfalfa monoculture, maize, rice, wheat and finally barley. Water is distributed as follows, from biggest to smallest allocation: rice, alfalfa, maize, wheat and barley.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many arid or semi-arid Mediterranean regions, agriculture is dependent on irrigation. When hydrological drought phenomena occur, farmers suffer from water shortages, incurring important economic losses. Yet, there is not agricultural insurance available for lack of irrigation water. This work attempts to evaluate hydrological drought risk and its economic impact on crop production in order to provide the basis for the design of drought insurance for irrigated arable crops. With this objective a model that relates water availability with expected yields is developed. Crop water requirements are calculated from evapotranspiration, effective rainfall and soil water balance. FAO?s methodology and AquaCrop software have been used to establish the relationship between water allocations and crop yields. The analysis is applied to the irrigation zone ?Riegos de Bardenas?, which is located in the Ebro river basin, northeast Spain, to the main arable crops in the area. Results show the fair premiums of different hydrological drought insurance products. Whole-farm insurance or irrigation district insurance should be preferable to crop specific insurance due to the drought management strategies used by farmers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Because climate can affect xylem cell anatomy, series of intra-annual cell anatomical features have the potential to retrospectively supply seasonal climatic information. In this study, we explored the ability to extract information about water stress conditions from tracheid features of the Mediterranean conifer Juniperus thurifera L. Tracheidograms of four climatic years from two drought-sensitive sites in Spain were compared to evaluate whether it is possible to link intra-annual cell size patterns to seasonal climatic conditions. Results indicated site-specific anatomical adjustment such as smaller and thicker tracheids at the dryer site but also showed a strong climatic imprint on the intra-annual pattern of tracheid size. Site differences in cell size reflected expected structural adjustments against cavitation failures. Differences between intra-annual patterns, however, indicated a response to seasonal changes in water availability whereby cells formed under drought conditions were smaller and thicker, and vice versa. This relationship was more manifest and stable at the dryer site

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Growing scarcity, increasing demand and bad management of water resources are causing weighty competition for water and consequently managers are facing more and more pressure in an attempt to satisfy users? requirement. In many regions agriculture is one of the most important users at river basin scale since it concentrates high volumes of water consumption during relatively short periods (irrigation season), with a significant economic, social and environmental impact. The interdisciplinary characteristics of related water resources problems require, as established in the Water Framework Directive 2000/60/EC, an integrated and participative approach to water management and assigns an essential role to economic analysis as a decision support tool. For this reason, a methodology is developed to analyse the economic and environmental implications of water resource management under different scenarios, with a focus on the agricultural sector. This research integrates both economic and hydrologic components in modelling, defining scenarios of water resource management with the goal of preventing critical situations, such as droughts. The model follows the Positive Mathematical Programming (PMP) approach, an innovative methodology successfully used for agricultural policy analysis in the last decade and also applied in several analyses regarding water use in agriculture. This approach has, among others, the very important capability of perfectly calibrating the baseline scenario using a very limited database. However one important disadvantage is its limited capacity to simulate activities non-observed during the reference period but which could be adopted if the scenario changed. To overcome this problem the classical methodology is extended in order to simulate a more realistic farmers? response to new agricultural policies or modified water availability. In this way an economic model has been developed to reproduce the farmers? behaviour within two irrigation districts in the Tiber High Valley. This economic model is then integrated with SIMBAT, an hydrologic model developed for the Tiber basin which allows to simulate the balance between the water volumes available at the Montedoglio dam and the water volumes required by the various irrigation users.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effects of row orien¬tation on vine and soil water status in an irrigated vineyard. The trial was developed during 2006, 2007 and 2008, in the South East region of Madrid (Spain) on 5-year old Cabernet franc grapevines (Vitis vinifera L.) grafted onto 140Ru. Plant spacing was 2.5 m x 1.5 m and vines were trained to a VSP. Four orientations were stu¬died: North-South (N-S), East-West (E-W), Northeast-Southwest (N+45) and North-South +20o (N+20). Irrigation (0.4•ET0) started when shoot growth stopped. Soil water availability was measured using a TDR technique with forty buried probes. Row orientation did not have any effect on water consumption in the vineyard. At maturity, leaf water potential was measured at predawn, early mor¬ning, midday and 14:00 solar time, on both canopy sides - sun and shade – ; the early morning measurement was the one that better differentiated treatments. Leaf water potential was a good indica¬tor of plant water status. Differences between (N-S and E-W) and (N+20 and N+45) treatments were obtained both on sun and shade canopy sides, N+20 and N+45 having lower leaf water potentials then drier leaves. The water stress integral shows that N-S and E-W reach the end of maturation with a greater level of hydration than N+45 and N+20. As a whole, N+45 and N+20 orientations, without affecting too much the soil available water content, induce regularly more water stress to the vine at some periods, probably due to an higher sunlight interception in early morning which makes water limitation for the vine more early and thus more severe during the day.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For over 100 years, water policy and man­ agement in Spain have been instruments of economic and social transformation. Sig­ nificant public and private investments in water supply infrastructures have equipped Spain with over 1,200 major dams, 20 major desalination plants ? with more under construction ? and several inter­basin water transfers. The system has been apparently very successful, with an increase in overall water availability, strong associated eco­ nomic development and few urban water supply shortages. This success has been supported by a widespread consensus among a strong and largely closed water policy community made up of water manag­ ers, irrigators, electric (hydropower) utilities and developers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper aims at developing a simulation framework to jointly assess agricultural and water issues. While the strong linkages between water, food, and the environment call for an integrated and multidisciplinary modelling approach, a complete and consistent modelling system to evaluate food-water relationships in Europe was missing so far. The spatial economic simulation model for agriculture CAPRI, which comprises a set of environmental indicators to assess food-environment interrelations within European regions, has been extended to account for food-water links. This modelling framework enables simulating the potential impact of climate change and water availability on agricultural production at the EU regional level, as well as looking at the sustainable use of water, the implementation of water policies or the integration of water issues in the Common Agricultural Policy

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Actualmente, la escasez de agua constituye un importante problema en muchos lugares del mundo. El crecimiento de la población, la creciente necesidad de alimentos, el desarrollo socio-económico y el cambio climático ejercen una importante y cada vez mayor presión sobre los recursos hídricos, a la que muchos países van a tener que enfrentarse en los próximos anos. La región Mediterránea es una de las regiones del mundo de mayor escasez de recursos hídricos, y es además una de las zonas más vulnerables al cambio climático. La mayoría de estudios sobre cambio climático prevén mayores temperaturas y una disminución de las precipitaciones, y una creciente escasez de agua debida a la disminución de recursos disponibles y al aumento de las demandas de riego. En el contexto actual de desarrollo de políticas se demanda cada vez más una mayor consideración del cambio climático en el marco de las políticas sectoriales. Sin embargo, los estudios enfocados a un solo sector no reflejan las múltiples dimensiones del los efectos del cambio climático. Numerosos estudios científicos han demostrado que el cambio climático es un fenómeno de naturaleza multi-dimensional y cuyos efectos se transmiten a múltiples escalas. Por tanto, es necesaria la producción de estudios y herramientas de análisis capaces de reflejar todas estas dimensiones y que contribuyan a la elaboración de políticas robustas en un contexto de cambio climático. Esta investigación pretende aportar una visión global de la problemática de la escasez de agua y los impactos, la vulnerabilidad y la adaptación al cambio climático en el contexto de la región mediterránea. La investigación presenta un marco integrado de modelización que se va ampliando progresivamente en un proceso secuencial y multi-escalar en el que en cada etapa se incorpora una nueva dimensión. La investigación consta de cuatro etapas que se abordan a lo largo de cuatro capítulos. En primer lugar, se estudia la vulnerabilidad económica de las explotaciones de regadío del Medio Guadiana, en España. Para ello, se utiliza un modelo de programación matemática en combinación con un modelo econométrico. A continuación, en la segunda etapa, se utiliza un modelo hidro-económico que incluye un modelo de cultivo para analizar los procesos que tienen lugar a escala de cultivo, explotación y cuenca teniendo en cuenta distintas escalas geográficas y de toma de decisiones. Esta herramienta permite el análisis de escenarios de cambio climático y la evaluación de posibles medidas de adaptación. La tercera fase consiste en el análisis de las barreras que dificultan la aplicación de procesos de adaptación para lo cual se analizan las redes socio-institucionales en la cuenca. Finalmente, la cuarta etapa aporta una visión sobre la escasez de agua y el cambio climático a escala nacional y regional mediante el estudio de distintos escenarios de futuro plausibles y los posibles efectos de las políticas en la escasez de agua. Para este análisis se utiliza un modelo econométrico de datos de panel para la región mediterránea y un modelo hidro-económico que se aplica a los casos de estudio de España y Jordania. Los resultados del estudio ponen de relieve la importancia de considerar múltiples escalas y múltiples dimensiones en el estudio de la gestión de los recursos hídricos y la adaptación al cambio climático en los contextos mediterráneos de escasez de agua estudiados. Los resultados muestran que los impactos del cambio climático en la cuenca del Guadiana y en el conjunto de España pueden comprometer la sostenibilidad del regadío y de los ecosistemas. El análisis a escala de cuenca hidrográfica resalta la importancia de las interacciones entre los distintos usuarios del agua y en concreto entre distintas comunidades de regantes, así como la necesidad de fortalecer el papel de las instituciones y de fomentar la creación de una visión común en la cuenca para facilitar la aplicación de los procesos de adaptación. Asimismo, los resultados de este trabajo evidencian también la capacidad y el papel fundamental de las políticas para lograr un desarrollo sostenible y la adaptación al cambio climático es regiones de escasez de agua tales como la región mediterránea. Especialmente, este trabajo pone de manifiesto el potencial de la Directiva Marco del Agua de la Unión Europea para lograr una efectiva adaptación al cambio climático. Sin embargo, en Jordania, además de la adaptación al cambio climático, es preciso diseñar estrategias de desarrollo sostenible más ambiciosas que contribuyan a reducir el riesgo futuro de escasez de agua. ABSTRACT Water scarcity is becoming a major concern in many parts of the world. Population growth, increasing needs for food production, socio-economic development and climate change represent pressures on water resources that many countries around the world will have to deal in the coming years. The Mediterranean region is one of the most water scarce regions of the world and is considered a climate change hotspot. Most projections of climate change envisage an increase in temperatures and a decrease in precipitation and a resulting reduction in water resources availability as a consequence of both reduced water availability and increased irrigation demands. Current policy development processes require the integration of climate change concerns into sectoral policies. However, sector-oriented studies often fail to address all the dimensions of climate change implications. Climate change research in the last years has evidenced the need for more integrated studies and methodologies that are capable of addressing the multi-scale and multi-dimensional nature of climate change. This research attempts to provide a comprehensive view of water scarcity and climate change impacts, vulnerability and adaptation in Mediterranean contexts. It presents an integrated modelling framework that is progressively enlarged in a sequential multi-scale process in which a new dimension of climate change and water resources is addressed at every stage. It is comprised of four stages, each one explained in a different chapter. The first stage explores farm-level economic vulnerability in the Spanish Guadiana basin using a mathematical programming model in combination with an econometric model. Then, in a second stage, the use of a hydro-economic modelling framework that includes a crop growth model allows for the analysis of crop, farm and basin level processes taking into account different geographical and decision-making scales. This integrated tool is used for the analysis of climate change scenarios and for the assessment of potential adaptation options. The third stage includes the analysis of barriers to the effective implementation of adaptation processes based on socioinstitutional network analysis. Finally, a regional and country level perspective of water scarcity and climate change is provided focusing on different possible socio-economic development pathways and the effect of policies on future water scarcity. For this analysis, a panel-data econometric model and a hydro-economic model are applied for the analysis of the Mediterranean region and country level case studies in Spain and Jordan. The overall results of the study demonstrate the value of considering multiple scales and multiple dimensions in water management and climate change adaptation in the Mediterranean water scarce contexts analysed. Results show that climate change impacts in the Guadiana basin and in Spain may compromise the sustainability of irrigation systems and ecosystems. The analysis at the basin level highlights the prominent role of interactions between different water users and irrigation districts and the need to strengthen institutional capacity and common understanding in the basin to enhance the implementation of adaptation processes. The results of this research also illustrate the relevance of water policies in achieving sustainable development and climate change adaptation in water scarce areas such as the Mediterranean region. Specifically, the EU Water Framework Directive emerges as a powerful trigger for climate change adaptation. However, in Jordan, outreaching sustainable development strategies are required in addition to climate change adaptation to reduce future risk of water scarcity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As part of the Mediterranean area, the Guadiana basin in Spain is particularly exposed to increasing water stress due to climate change. Future warmer and drier climate will have negative implications for the sustainability of water resources and irrigation agriculture, the main socio- economic sector in the region. This paper illustrates a systematic analysis of climate change impacts and adaptation in the Guadiana basin based on a two-stage modeling approach. First, an integrated hydro-economic modeling framework was used to simulate the potential effects of regional climate change scenarios for the period 2000-2069. Second, a participatory multi-criteria technique, namely the Analytic Hierarchy Process (AHP), was applied to rank potential adaptation measures based on agreed criteria. Results show that, in the middle-long run and under severe climate change, reduced water availability, lower crop yields and increased irrigation demands might lead to water shortages, crop failure, and up to ten percent of income losses to irrigators. AHP results show how private farming adaptation measures, including improving irrigation efficiency and adjusting crop varieties, are preferred to public adaptation measures, such as building new dams. The integrated quantitative and qualitative methodology used in this research can be considered a socially-based valuable tool to support adaptation decision-making.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

El agua es un recurso cada vez más escaso y valioso. Por ello, los recursos hídricos disponibles deben asignarse de una forma eficiente entre los diferentes usos. El cambio climático aumentará la frecuencia y severidad de los eventos extremos, y podría incrementar la demanda de agua de los cultivos. El empleo de mecanismos flexibles de asignación de agua puede ser imprescindible para hacer frente a este aumento en la variabilidad del balance hídrico y para asegurar que los riesgos de suministro, y no solo los recursos, son compartidos de manera eficiente entre los usuarios. Los mercados de agua permiten la reasignación de los recursos hídricos, favoreciendo su transferencia desde los usos de menor a los de mayor valor. Diferentes tipos de mercados de agua se han establecido en diferentes partes del mundo, ayudando a los participantes a afrontar los problemas de escasez de agua en esas zonas. En España, los intercambios de agua están permitidos desde 1999, aunque la participación de los usuarios en el mercado ha sido limitada. Hay varios aspectos de los mercados de agua en España que deben mejorarse. Esta tesis, además de proponer una serie de cambios en el marco regulatorio, propone la introducción de contratos de opción de agua como una posible mejora. La principal ventaja de este tipo de contratos es la estabilidad legal e institucional que éstos proporcionan tanto a compradores como vendedores. Para apoyar esta propuesta, se han llevado a cabo diferentes análisis que muestran el potencial de los contratos de opción como herramienta de reducción del riesgo asociado a una oferta de agua inestable. La Cuenca del Segura (Sureste de España), la Cuenca del Tajo y el Acueducto Tajo- Segura han sido seleccionados como casos de estudio. Tres análisis distintos aplicados a dicha región se presentan en esta tesis: a) una evaluación de los contratos de opción como mecanismo para reducir los riesgos de disponibilidad de agua sufridos por los regantes en la Cuenca del Segura; b) un marco teórico para analizar las preferencias de los regantes por diferentes mecanismos de gestión del riesgo de disponibilidad de agua, su disposición a pagar por ellos y los precios aproximados de estos instrumentos (seguro de sequía y contratos de opción de agua); y c) una evaluación del papel de los contratos de opción en las decisiones de aprovisionamiento de agua de una comunidad de regantes ante una oferta de agua incierta. Los resultados muestran el potencial de reducción del riesgo de los contratos de opción para regantes en España, pero pueden ser extrapolados a otros sectores o regiones. Las principales conclusiones de esta tesis son: a) la agricultura será uno de los sectores más afectados por el cambio climático. Si los precios del agua aumentan, la rentabilidad de los cultivos puede caer hasta niveles negativos, lo que podría dar lugar al abandono de cultivos de regadío en algunas zonas de España. Las políticas de cambio climático y de agua deben estar estrechamente coordinadas para asegurar un uso de agua eficiente y la rentabilidad de la agricultura; b) aunque los mercados de agua han ayudado a algunos usuarios a afrontar problemas de disponibilidad del recurso en momentos de escasez, hay varios aspectos que deben mejorarse; c) es necesario desarrollar mercados de agua más flexibles y estables para garantizar una asignación eficiente de los recursos entre los usuarios de agua; d) los resultados muestran los beneficios derivados del establecimiento de un contrato de opción entre usuarios de agua del Tajo y del Segura para reducir el riesgo de disponibilidad de agua en la cuenca receptora; e) la disposición a pagar de los regantes por un contrato de opción de agua o un seguro de sequía hidrológica, que representa el valor que tienen estos mecanismos para aquellos usuarios de agua que se enfrentan a riesgos relacionados con la disponibilidad del recurso, es consistente con los resultados obtenidos en estudios previos y superior al precio de mercado de estos instrumentos, lo que favorece la viabilidad de estos mecanismos de gestión del riesgo ; y f) los contratos de opción podrían ayudar a optimizar las decisiones de aprovisionamiento de agua bajo incertidumbre, proporcionando más estabilidad y flexibilidad que los mercados temporales de agua. ABSTRACT Water is becoming increasingly scarce and valuable. Thus, existing water resources need to be efficiently allocated among users. Climate change is expected to increase the frequency and severity of extreme events, and it may also increase irrigated crops' water demand. The implementation of flexible allocation mechanisms could be essential to cope with this increased variability of the water balance and ensure that supply risks, and not only water resources, are also efficiently shared and managed. Water markets allow for the reallocation of water resources from low to high value uses. Different water trading mechanisms have been created in different parts of the world and have helped users to alleviate water scarcity problems in those areas. In Spain, water trading is allowed since 1999, although market activity has been limited. There are several issues in the Spanish water market that should be improved. This thesis, besides proposing several changes in the legislative framework, proposes the introduction of water option contracts as a potential improvement. The main advantage for both buyer and seller derived from an option contract is the institutional and legal stability it provides. To support this proposal, different analyses have been carried out that show the potential of option contracts as a risk reduction tool to manage water supply instability. The Segura Basin (Southeast Spain), the Tagus Basin and the Tagus-Segura inter-basin Transfer have been selected as the case study. Three different analyses applied to this region are presented in this thesis: a) an evaluation of option contracts as a mechanisms to reduce water supply availability risks in the Segura Basin; b) a theoretical framework for analyzing farmer’s preferences for different water supply risk management tools and farmers’ willingness to pay for them, together with the assessment of the prices of these mechanisms (drought insurance and water option contracts); and c) an evaluation of the role of option contracts in water procurement decisions under uncertainty. Results show the risk-reduction potential of option contracts for the agricultural sector in Spain, but these results can be extrapolated to other sectors or regions. The main conclusions of the thesis are: a) agriculture would be one of the most affected sectors by climate change. With higher water tariffs, crop’s profitability can drop to negative levels, which may result in the abandoning of the crop in many areas. Climate change and water policies must be closely coordinated to ensure efficient water use and crops’ profitability; b) although Spanish water markets have alleviated water availability problems for some users during water scarcity periods, there are several issues that should be improved; c) more flexible and stable water market mechanisms are needed to allocate water resources and water supply risks among competing users; d) results show the benefits derived from the establishment of an inter-basin option contract between water users in the Tagus and the Segura basins for reducing water supply availability risks in the recipient area; e) irrigators’ willingness to pay for option contracts or drought insurance, that represent the value that this kind of trading mechanisms has for water users facing water supply reliability problems, are consistent with results obtained in previous works and higher than the prices of this risk management tools, which shows the feasibility of these mechanisms; and f) option contracts would help to optimize water procurement decisions under uncertainty, providing more flexibility and stability than the spot market.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water is fundamental to human life and the availability of freshwater is often a constraint on human welfare and economic development. Consequently, the potential effects of global changes on hydrology and water resources are considered among the most severe and vital ones. Water scarcity is one of the main problems in the rural communities of Central America, as a result of an important degradation of catchment areas and the over-exploitation of aquifers. The present Thesis is focused on two critical aspects of global changes over water resources: (1) the potential effects of climate change on water quantity and (2) the impacts of land cover and land use changes on the hydrological processes and water cycle. Costa Rica is among the few developing countries that have recently achieved a land use transition with a net increase in forest cover. Osa Region in South Pacific Costa Rica is an appealing study site to assess water supply management plans and to measure the effects of deforestation, forest transitions and climate change projections reported in the region. Rural Community Water Supply systems (ASADAS) in Osa are dealing with an increasing demand of freshwater due to the growing population and the change in the way of life in the rural livelihoods. Land cover mosaics which have resulted from the above mentioned processes are characterized by the abandonment of marginal farmland with the spread over these former grasslands of high return crops and the expansion of secondary forests due to reforestation initiatives. These land use changes have a significant impact on runoff generation in priority water-supply catchments in the humid tropics, as evidenced by the analysis of the Tinoco Experimental Catchment in the Southern Pacific area of Costa Rica. The monitoring system assesses the effects of the different land uses on the runoff responses and on the general water cycle of the basin. Runoff responses at plot scale are analyzed for secondary forests, oil palm plantations, forest plantations and grasslands. The Oil palm plantation plot presented the highest runoff coefficient (mean RC=32.6%), twice that measured under grasslands (mean RC=15.3%) and 20-fold greater than in secondary forest (mean RC=1.7%). A Thornthwaite-type water balance is proposed to assess the impact of land cover and climate change scenarios over water availability for rural communities in Osa Region. Climate change projections were obtained by the downscaling of BCM2, CNCM3 and ECHAM5 models. Precipitation and temperature were averaged and conveyed by the A1B, A2 and B1 IPCC climate scenario for 2030, 2060 and 2080. Precipitation simulations exhibit a positive increase during the dry season for the three scenarios and a decrease during the rainy season, with the highest magnitude (up to 25%) by the end of the 21st century under scenario B1. Monthly mean temperature simulations increase for the three scenarios throughout the year with a maximum increase during the dry season of 5% under A1B and A2 scenarios and 4% under B1 scenario. The Thornthwaite-type Water Balance model indicates important decreases of water surplus for the three climate scenarios during the rainy season, with a maximum decrease on May, which under A1B scenario drop up to 20%, under A2 up to 40% and under B1 scenario drop up to almost 60%. Land cover scenarios were created taking into account current land cover dynamics of the region. Land cover scenario 1 projects a deforestation situation, with forests decreasing up to 15% due to urbanization of the upper catchment areas; land cover scenario 2 projects a forest recovery situation where forested areas increase due to grassland abandonment on areas with more than 30% of slope. Deforestation scenario projects an annual water surplus decrease of 15% while the reforestation scenario projects a water surplus increase of almost 25%. This water balance analysis indicates that climate scenarios are equal contributors as land cover scenarios to future water resource estimations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Agricultural water management needs to evolve in view of increased water scarcity, especially when farming and natural protected areas are closely linked. In the study site of Don?ana (southern Spain), water is shared by rice producers and a world heritage biodiversity ecosystem. Our aim is to contribute to defining adaptation strategies that may build resilience to increasing water scarcity and minimize water conflicts among agricultural and natural systems. The analytical framework links a participatory process with quantitative methods to prioritize the adaptation options. Bottom-up proposed adaptation measures are evaluated by a multi-criteria analysis (MCA) that includes both socioeconomic criteria and criteria of the ecosystem services affected by the adaptation options. Criteria weights are estimated by three different methods?analytic hierarchy process, Likert scale and equal weights?that are then compared. Finally, scores from an MCA are input into an optimization model used to determine the optimal land-use distribution in order to maximize utility and land-use diversification according to different scenarios of funds and water availability. While our results show a spectrum of perceptions of priorities among stakeholders, there is one overriding theme that is to define a way to restore part of the rice fields to natural wetlands. These results hold true under the current climate scenario and evenmore so under an increased water scarcity scenario.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Users in the Mediterranean region face significant water supply risks. Water markets mechanisms can provide flexibility to water systems run in tight situations. The largest water infrastructure in the Iberian Peninsula connects the Segura and Tagus Basins. Stakeholders and politicians in the Tagus Basin have asked that water transfers between the two basins be eventually phased out. The need to increase the statutory minimum environmental flow in the middle Tagus and to meet new urban demands is going to result in a redefinition of the Transfer?s management rules, leading to a reduction in the transferable volumes. To minimise the consequences of such restrictions to irrigators in the Segura Basin who depend on the transferred volumes, we propose the establishment of water option contracts between both basins that represents an institutional innovation with respect to previous inter-basin spot market experiences. Based on the draft of the new Tagus Basin Plan, we propose both a modification of the Transfer?s management rule and an innovative inter-basin option contract. The main goal of the paper is to define this contract and evaluate it with respect to non-market scenarios. We also assess the resulting impact on environmental flows in the Tagus River and water availability for users in the Segura Basin, together with the economic impacts of such contract on both basins. Our results show that the proposed option contract would reduce the impact of a change in the transfer?s management rule, and reduce the supply risks of the recipient area.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Climate Change, Water Scarcity in Agriculture and the Country-Level Economic Impacts. A Multimarket Analysis. Abstract: Agriculture could be one of the most vulnerable economic sectors to the impacts of climate change in the coming decades. Considering the critical role that water plays for agricultural production, any shock in water availability will have great implications for agricultural production, land allocation, and agricultural prices. In this paper, an Agricultural Multimarket model is developed to analyze climate change impacts in developing countries, accounting for the uncertainty associated with the impacts of climate change. The model has a structure flexible enough to represent local conditions, resource availability, and market conditions. The results suggest different economic consequences of climate change depending on the specific activity, with many distributional effects across regions