28 resultados para Wall icing

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi. The agb1 mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens. Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγ subunits (γ1/AGG1 and γ2/AGG2). Accordingly, we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina. To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance, we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P. cucumerina. This analysis, together with metabolomic studies, demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi, such as the salicylic acid, jasmonic acid, ethylene, abscisic acid, and tryptophan-derived metabolites signaling, as these pathways were not impaired in agb1 and agg1 agg2 mutants. Notably, many mis-regulated genes in agb1 plants were related with cell wall functions, which was also the case in agg1 agg2 mutant. Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants, and that mutant walls had similar FTIR spectratypes, which differed from that of wild-type plants. The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transgenic tomato hypocotyls with altered levels of an XTH gene were used to study how XET activity could affect the hypocotyl growth and cell wall extensibility. Transgenic hypocotyls showed significant over-expression (line 13) or co-suppression (line 33) of the SlXTH1 in comparison with the wild type, with these results being correlated with the results on specific soluble XET activity, suggesting that SlXTH1 translates mainly for a soluble XET isoenzyme. A relationship between XET activity and cell wall extensibility was found, and the highest total extensibility was located in the apical hypocotyl segment of the over-expressing SlXTH1 line, where the XET-specific activity and hypocotyl growth were also highest compared with the wild line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of aortic wall, both healthy and pathological, are needed in order to develop and improve diagnostic and interventional criteria, and for the development of mechanical models to assess arterial integrity. This study focuses on the mechanical behaviour and rupture conditions of the human ascending aorta and its relationship with age and pathologies. Fresh ascending aortic specimens harvested from 23 healthy donors, 12 patients with bicuspid aortic valve (BAV) and 14 with aneurysm were tensile-tested in vitro under physiological conditions. Tensile strength, stretch at failure and elbow stress were measured. The obtained results showed that age causes a major reduction in the mechanical parameters of healthy ascending aortic tissue, and that no significant differences are found between the mechanical strength of aneurysmal or BAV aortic specimens and the corresponding age-matched control group. The physiological level of the stress in the circumferential direction was also computed to assess the physiological operation range of healthy and diseased ascending aortas. The mean physiological wall stress acting on pathologic aortas was found to be far from rupture, with factors of safety (defined as the ratio of tensile strength to the mean wall stress) larger than six. In contrast, the physiological operation of pathologic vessels lays in the stiff part of the response curve, losing part of its function of damping the pressure waves from the heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The European HiPER project aims to demonstrate commercial viability of inertial fusion energy within the following two decades. This goal requires an extensive Research &Development program on materials for different applications (e.g., first wall, structural components and final optics). In this paper we will discuss our activities in the framework of HiPER to develop materials studies for the different areas of interest. The chamber first wall will have to withstand explosions of at least 100 MJ at a repetition rate of 5-10 Hz. If direct drive targets are used, a dry wall chamber operated in vacuum is preferable. In this situation the major threat for the wall stems from ions. For reasonably low chamber radius (5-10 m) new materials based on W and C are being investigated, e.g., engineered surfaces and nanostructured materials. Structural materials will be subject to high fluxes of neutrons leading to deleterious effects, such as, swelling. Low activation advanced steels as well as new nanostructured materials are being investigated. The final optics lenses will not survive the extreme ion irradiation pulses originated in the explosions. Therefore, mitigation strategies are being investigated. In addition, efforts are being carried out in understanding optimized conditions to minimize the loss of optical properties by neutron and gamma irradiation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution presents results of an incompressible two-dimensional flow over an open cavity of fixed aspect ratio (length/depth) L/D = 2 and the coupling between the three dimensional low frequency oscillation mode confined in the cavity and the wave-like disturbances evolving on the downstream wall of the cavity in the form of Tollmien-Schlichting waves. BiGlobal instability analysis is conducted to search the global disturbances superimposed upon a two-dimensional steady basic flow. The base solution is computed by the integration of the laminar Navier-Stokes equations in primitive variable formulation, while the eigenvalue problem (EVP) derived from the discretization of the linearized equations of motion in the BiGlobal framework is solved using an iterative procedure. The formulation of the BiGlobal EVP for the unbounded flow in the open cavity problem introduces additional difficulties regarding the flow-through boundaries. Local analysis has been utilized for the determination of the proper boundary conditions in the upper limit of the downstream region

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m−2 and implant more than 1018 particles m−2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation was undertaken consisting of a state-of-the-art and comparative analysis of currently available methods for calculating the structural stability of wave walls in sloping breakwaters. A total of six design schemes are addressed. The conditions under which the formulations and ranges of validity are explicitly indicated by their authors, are given. The lack of definition in parameters to be used and aspects not taken into account in their investigations are discussed and the results of this analysis are given in a final table.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m−2 and implant more than 1018 particles m−2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lack of materials able to withstand the severe radiation conditions (high thermal loads and atomistic damage) expected in fusion reactors is the actual bottle neck for fusion to become a reality. The main requisite for plasma facing materials (PFM) is to have excellent structural stability since severe cracking or mass loss would hamper their protection role which turns out to be unacceptable. Additional practical requirements for plasma facing materials are among others: (i) high thermal shock resistance, (ii) high thermal conductivity (iii) high melting point (iv) low physical and chemical sputtering, and (v) low tritium retention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of disruptions in JET became even more important with the replacement of the previous Carbon Fiber Composite (CFC) wall with a more fragile full metal ITER-like wall (ILW). The development of robust disruption mitigation systems is crucial for JET (and also for ITER). Moreover, a reliable real-time (RT) disruption predictor is a pre-requisite to any mitigation method. The Advance Predictor Of DISruptions (APODIS) has been installed in the JET Real-Time Data Network (RTDN) for the RT recognition of disruptions. The predictor operates with the new ILW but it has been trained only with discharges belonging to campaigns with the CFC wall. 7 realtime signals are used to characterize the plasma status (disruptive or non-disruptive) at regular intervals of 1 ms. After the first 3 JET ILW campaigns (991 discharges), the success rate of the predictor is 98.36% (alarms are triggered in average 426 ms before the disruptions). The false alarm and missed alarm rates are 0.92% and 1.64%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explains a procedure for the choice of ballast modules used for the design of direct continuous foundation in karst terrain. The presence of dangerous cavities is introduced in this procedure thereby evaluating risk failure. It also provides pertinent guidelines to direct the geotechnical survey of the terrain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explains a procedure for the choice of ballast modules used for the design of direct continuous foundation in karst terrain. The presence of dangerous cavities is introduced in this procedure thereby evaluating risk failure. It also provides pertinent guidelines to direct the geotechnical survey of the terrain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth and biomechanics of etiolated hypocotyls from Arabidopsis thaliana lines overexpressing xyloglucan endotransglucosylase/hydrolase AtXTH18, AtXTH19, AtXTH20, and PttXET16-34 were studied. Overexpression of AtXTH18, AtXTH19, and AtXTH20 stimulated growth of hypocotyls, while PttXET16-34 overexpression did not show this effect. In vitro extension of frozen/thawed hypocotyls measured by a constant-load extensiometer started from a high-amplitude initial deformation followed by a slow time-dependent creep. Creep of growing XTH-overexpressing (OE) hypocotyls was more linear in time compared with the wild type at pH 5.0, reflecting their higher potential for long-term extension. XTH-OE plants deposited 65?84% more cell wall material per hypocotyl cross-sectional area than wild-type plants. As a result, their wall stress under each external load was lower than in the wild-type. Growing XTH-OE hypocotyls had higher values of initial deformation·stress?1 compared with the wild type. Plotting creep rates for each line under different loads against the respective wall stress values gave straight lines. Their slopes and intercepts with the abscissa correspond to ? (in vitro cell wall extensibility) and y (in vitro cell wall yield threshold) values characterizing cell wall material properties. The wall material in XTH-OE lines was more pliant than in the wild type due to lower y values. In contrast, the acid-induced wall extension in vitro resulted from increasing ? values. Thus, three factors contributed to the XTH-OE-stimulated growth in Arabidopsis hypocotyls: their more linear creep, higher values of initial deformation·stress?1, and lower y values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that a green wall brings some advantages to a building. It constitutes a barrier against solar radiation, thus decreasing and delaying the incoming heat flux. The aim of this study is to quantify such advantages through analytical comparison between two facades, a vegetal facade and a conventional facade. Both were highly insulated (U-value = 0.3 W/m2K) and installed facing south on the same building in the central territory of Spain. In order to compare their thermal trend, a series of sensors were used to register superficial and indoor air temperature. The work was carried out between 17th August 2012 and 1st October 2012, with a temperature range of 12°C-36°C and a maximum horizontal radiation of 1020 W/m2. Results show that the indoor temperature of the green wall module was lower than the other. Besides, comparing superficial outdoor and indoor temperatures of the two walls to outdoor air temperatures, it was noticed that, due to the shading plants, the green wall superficial temperature was 5 °C lower on the facade, while the bare wall temperature was 15 °C higher. The living wall module temperature was 1.6 °C lower than the outdoor, while the values of the conventional one were similar to the outdoor air temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sugarcane leaf shows the classical arrangement of cells which defines a C4 species. Vascular bundles consist of xylem, phloem and fibres, surrounded by an outer layer of sclereids and an inner ring of stone cells associated with the phloem. Some sclereids located below and above the vascular bundles act as docking cells and connect the vascular bundle to the internal surfaces of upper and lower layers of the epidermis. A compact mass of sclereids occupies the total internal volume of the leaf edge. Neither docking cells nor the internal mass of sclereids in the edge were markedly coloured by acriflavin or phloroglucinol, indicating the absence of lignin in their cell walls. However, such staining indicated that fibres of the vascular bundle and the external layer of sclereids were strongly lignified. Incubation of leaf discs with an elicitor produced by the pathogen Sporisorium scitamineum increased the thickness of the lignified cell walls of sclereids as well as the mid and small xylem vessels, as a possible mechanical defense response to the potential entry of the pathogen.