5 resultados para Wakabayashi, Mel

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been significant interest in parallel execution models for logic programs which exploit Independent And-Parallelism (IAP). In these models, it is necessary to determine which goals are independent and therefore eligible for parallel execution and which goals have to wait for which others during execution. Although this can be done at run-time, it can imply a very heavy overhead. In this paper, we present three algorithms for automatic compiletime parallelization of logic programs using IAP. This is done by converting a clause into a graph-based computational form and then transforming this graph into linear expressions based on &-Prolog, a language for IAP. We also present an algorithm which, given a clause, determines if there is any loss of parallelism due to linearization, for the case in which only unconditional parallelism is desired. Finally, the performance of these annotation algorithms is discussed for some benchmark programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los procedimientos de evaluación de la calidad de la voz basados en la valoración subjetiva a través de la percepción acústica por parte de un experto están bastante extendidos. Entre ellos,el protocolo GRBAS es el más comúnmente utilizado en la rutina clínica. Sin embargo existen varios problemas derivados de este tipo de estimaciones, el primero de los cuales es que se precisa de profesionales debidamente entrenados para su realización. Otro inconveniente reside en el hecho de que,al tratarse de una valoración subjetiva, múltiples circunstancias significativas influyen en la decisión final del evaluador, existiendo en muchos casos una variabilidad inter-evaluador e intra-evaluador en los juicios. Por estas razones se hace necesario el uso de parámetros objetivos que permitan realizar una valoración de la calidad de la voz y la detección de diversas patologías. Este trabajo tiene como objetivo comparar la efectividad de diversas técnicas de cálculo de parámetros representativos de la voz para su uso en la clasificación automática de escalas perceptuales. Algunos parámetros analizados serán los coeficientes Mel-Frequency Cepstral Coefficients(MFCC),las medidas de complejidad y las de ruido.Así mismo se introducirá un nuevo conjunto de características extraídas del Espectro de Modulación (EM) denominadas Centroides del Espectro de Modulación (CEM).En concreto se analizará el proceso de detección automática de dos de los cinco rasgos que componen la escala GRBAS: G y R. A lo largo de este documento se muestra cómo las características CEM proporcionan resultados similares a los de otras técnicas anteriormente utilizadas y propician en algún caso un incremento en la efectividad de la clasificación cuando son combinados con otros parámetros.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente proyecto tiene el objetivo de facilitar la composición de canciones mediante la creación de las distintas pistas MIDI que la forman. Se implementan dos controladores. El primero, con objeto de transcribir la parte melódica, convierte la voz cantada o tarareada a eventos MIDI. Para ello, y tras el estudio de las distintas técnicas del cálculo del tono (pitch), se implementará una técnica con ciertas variaciones basada en la autocorrelación. También se profundiza en el segmentado de eventos, en particular, una técnica basada en el análisis de la derivada de la envolvente. El segundo, dedicado a la base rítmica de la canción, permite la creación de la percusión mediante el golpe rítmico de objetos que disponga el usuario, que serán asignados a los distintos elementos de percusión elegidos. Los resultados de la grabación de estos impactos serán señales de corta duración, no lineales y no armónicas, dificultando su discriminación. La herramienta elegida para la clasificación de los distintos patrones serán las redes neuronales artificiales (RNA). Se realizara un estudio de la metodología de diseño de redes neuronales especifico para este tipo de señales, evaluando la importancia de las variables de diseño como son el número de capas ocultas y neuronas en cada una de ellas, algoritmo de entrenamiento y funciones de activación. El estudio concluirá con la implementación de dos redes de diferente naturaleza. Una red de Elman, cuyas propiedades de memoria permiten la clasificación de patrones temporales, procesará las cualidades temporales analizando el ataque de su forma de onda. Una red de propagación hacia adelante feed-forward, que necesitará de robustas características espectrales y temporales para su clasificación. Se proponen 26 descriptores como los derivados de los momentos del espectro: centroide, curtosis y simetría, los coeficientes cepstrales de la escala de Mel (MFCCs), y algunos temporales como son la tasa de cruces por cero y el centroide de la envolvente temporal. Las capacidades de discriminación inter e intra clase de estas características serán evaluadas mediante un algoritmo de selección, habiéndose elegido RELIEF, un método basado en el algoritmo de los k vecinos mas próximos (KNN). Ambos controladores tendrán función de trabajar en tiempo real y offline, permitiendo tanto la composición de canciones, como su utilización como un instrumento más junto con mas músicos. ABSTRACT. The aim of this project is to make song composition easier by creating each MIDI track that builds it. Two controllers are implemented. In order to transcribe the melody, the first controler converts singing voice or humming into MIDI files. To do this a technique based on autocorrelation is implemented after having studied different pitch detection methods. Event segmentation has also been dealt with, to be more precise a technique based on the analysis of the signal's envelope and it's derivative have been used. The second one, can be used to make the song's rhythm . It allows the user, to create percussive patterns by hitting different objects of his environment. These recordings results in short duration, non-linear and non-harmonic signals. Which makes the classification process more complicated in the traditional way. The tools to used are the artificial neural networks (ANN). We will study the neural network design to deal with this kind of signals. The goal is to get a design methodology, paying attention to the variables involved, as the number of hidden layers and neurons in each, transfer functions and training algorithm. The study will end implementing two neural networks with different nature. Elman network, which has memory properties, is capable to recognize sequences of data and analyse the impact's waveform, precisely, the attack portion. A feed-forward network, needs strong spectral and temporal features extracted from the hit. Some descriptors are proposed as the derivates from the spectrum moment as centroid, kurtosis and skewness, the Mel-frequency cepstral coefficients, and some temporal features as the zero crossing rate (zcr) and the temporal envelope's centroid. Intra and inter class discrimination abilities of those descriptors will be weighted using the selection algorithm RELIEF, a Knn (K-nearest neighbor) based algorithm. Both MIDI controllers can be used to compose, or play with other musicians as it works on real-time and offline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of automatic pathological voice detection systems is to serve as tools, to medical specialists, for a more objective, less invasive and improved diagnosis of diseases. In this respect, the gold standard for those system include the usage of a optimized representation of the spectral envelope, either based on cepstral coefficients from the mel-scaled Fourier spectral envelope (Mel-Frequency Cepstral Coefficients) or from an all-pole estimation (Linear Prediction Coding Cepstral Coefficients) forcharacterization, and Gaussian Mixture Models for posterior classification. However, the study of recently proposed GMM-based classifiers as well as Nuisance mitigation techniques, such as those employed in speaker recognition, has not been widely considered inpathology detection labours. The present work aims at testing whether or not the employment of such speaker recognition tools might contribute to improve system performance in pathology detection systems, specifically in the automatic detection of Obstructive Sleep Apnea. The testing procedure employs an Obstructive Sleep Apnea database, in conjunction with GMM-based classifiers looking for a better performance. The results show that an improved performance might be obtained by using such approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gender detection is a very important objective to improve efficiency in tasks as speech or speaker recognition, among others. Traditionally gender detection has been focused on fundamental frequency (f0) and cepstral features derived from voiced segments of speech. The methodology presented here consists in obtaining uncorrelated glottal and vocal tract components which are parameterized as mel-frequency coefficients. K-fold and cross-validation using QDA and GMM classifiers showed that better detection rates are reached when glottal source and vocal tract parameters are used in a gender-balanced database of running speech from 340 speakers.