7 resultados para WHITE-MATTER INTEGRITY

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies have assessed the characterization of anatomical or functional connectivity in mild cognitive impairment (MCI), however it is still unknown how they are related in the course of the pathology. Here we integrate the analysis of magnetoencephalographic (MEG) data with white matter (WM) integrity quantification from diffusion weighted imaging (DWI), to asses whether the damage in the WM tracts disrupt the organization of the functional networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of new signal processing methods, such as non-linear analysis techniques, represents a new perspective which adds further value to brain signals' analysis. Particularly, Lempel–Ziv's Complexity (LZC) has proven to be useful in exploring the complexity of the brain electromagnetic activity. However, an important problem is the lack of knowledge about the physiological determinants of these measures. Although acorrelation between complexity and connectivity has been proposed, this hypothesis was never tested in vivo. Thus, the correlation between the microstructure of the anatomic connectivity and the functional complexity of the brain needs to be inspected. In this study we analyzed the correlation between LZC and fractional anisotropy (FA), a scalar quantity derived from diffusion tensors that is particularly useful as an estimate of the functional integrity of myelinated axonal fibers, in a group of sixteen healthy adults (all female, mean age 65.56 ± 6.06 years, intervals 58–82). Our results showed a positive correlation between FA and LZC scores in regions including clusters in the splenium of the corpus callosum, cingulum, parahipocampal regions and the sagittal stratum. This study supports the notion of a positive correlation between the functional complexity of the brain and the microstructure of its anatomical connectivity. Our investigation proved that a combination of neuroanatomical and neurophysiological techniques may shed some light on the underlying physiological determinants of brain's oscillations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although progressive functional brain network disruption has been one of the hallmarks of Alzheimer?s Dis- ease, little is known about the origin of this functional impairment that underlies cognitive symptoms. We in- vestigated how the loss of white matter (WM) integrity disrupts the organization of the functional networks at different frequency bands. The analyses were performed in a sample of healthy elders and mild cognitive im- pairment (MCI) subjects. Spontaneous brain magnetic activity (measured with magnetoencephalography) was characterized with phase synchronization analysis, and graph theory was applied to the functional networks. We identified WM areas (using diffusion weighted magnetic resonance imaging) that showed a statistical de- pendence between the fractional anisotropy and the graph metrics. These regions are part of an episodic mem- ory network and were also related to cognitive functions. Our data support the hypothesis that disruption of the anatomical networks influences the organization at the functional level resulting in the prodromal dementia syndrome of MCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here gray and white matter changes after four weeks of videogame practice were analyzed using optimized voxel-based morphometry (VBM), cortical surface and cortical thickness indices, and white matter integrity computed from several projection, commissural, and association tracts relevant to cognition. Beginning with a sample of one hundred young females, twenty right handed participants were recruited for the study and assigned to a practice or a control group carefully matched by their general cognitive ability scores. After the first scan, the practice group played ‘Professor Layton and The Pandora's Box’ 4 h per week during four weeks. A second scan was obtained at the end of practice and intelligence was measured again. Image analyses revealed gray and white matter changes in the practice group. Gray matter changes theoretically relevant for intelligence were observed for the practice group mainly in frontal clusters (Brodmann areas 9 and 10) and also in smaller parietal and temporal regions. White matter findings were focused in the hippocampal cingulum and the inferior longitudinal fasciculus. These gray and white matter changes presumably induced by practice did not interact with intelligence tests' scores.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Attentional control and Information processing speed are central concepts in cognitive psychology and neuropsychology. Functional neuroimaging and neuropsychological assessment have depicted theoretical models considering attention as a complex and non-unitary process. One of its component processes, Attentional set-shifting ability, is commonly assessed using the Trail Making Test (TMT). Performance in the TMT decreases with increasing age in adults, Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD). Besides, speed of information processing (SIP) seems to modulate attentional performance. While neural correlates of attentional control have been widely studied, there are few evidences about the neural substrates of SIP in these groups of patients. Different authors have suggested that it could be a property of cerebral white matter, thus, deterioration of the white matter tracts that connect brain regions related to set-shifting may underlie the age-related, MCI and AD decrease in performance. The aim of this study was to study the anatomical dissociation of attentional and speed mechanisms. Diffusion tensor imaging (DTI) provides a unique insight into the cellular integrity of the brain, offering an in vivo view into the microarchitecture of cerebral white matter. At the same time, the study of ageing, characterized by white matter decline, provides the opportunity to study the anatomical substrates speeded or slowed information processing. We hypothesized that FA values would be inversely correlated with time to completion on Parts A and B of the TMT, but not the derived scores B/A and B-A.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La investigación para el conocimiento del cerebro es una ciencia joven, su inicio se remonta a Santiago Ramón y Cajal en 1888. Desde esta fecha a nuestro tiempo la neurociencia ha avanzado mucho en el desarrollo de técnicas que permiten su estudio. Desde la neurociencia cognitiva hoy se explican muchos modelos que nos permiten acercar a nuestro entendimiento a capacidades cognitivas complejas. Aun así hablamos de una ciencia casi en pañales que tiene un lago recorrido por delante. Una de las claves del éxito en los estudios de la función cerebral ha sido convertirse en una disciplina que combina conocimientos de diversas áreas: de la física, de las matemáticas, de la estadística y de la psicología. Esta es la razón por la que a lo largo de este trabajo se entremezclan conceptos de diferentes campos con el objetivo de avanzar en el conocimiento de un tema tan complejo como el que nos ocupa: el entendimiento de la mente humana. Concretamente, esta tesis ha estado dirigida a la integración multimodal de la magnetoencefalografía (MEG) y la resonancia magnética ponderada en difusión (dMRI). Estas técnicas son sensibles, respectivamente, a los campos magnéticos emitidos por las corrientes neuronales, y a la microestructura de la materia blanca cerebral. A lo largo de este trabajo hemos visto que la combinación de estas técnicas permiten descubrir sinergias estructurofuncionales en el procesamiento de la información en el cerebro sano y en el curso de patologías neurológicas. Más específicamente en este trabajo se ha estudiado la relación entre la conectividad funcional y estructural y en cómo fusionarlas. Para ello, se ha cuantificado la conectividad funcional mediante el estudio de la sincronización de fase o la correlación de amplitudes entre series temporales, de esta forma se ha conseguido un índice que mide la similitud entre grupos neuronales o regiones cerebrales. Adicionalmente, la cuantificación de la conectividad estructural a partir de imágenes de resonancia magnética ponderadas en difusión, ha permitido hallar índices de la integridad de materia blanca o de la fuerza de las conexiones estructurales entre regiones. Estas medidas fueron combinadas en los capítulos 3, 4 y 5 de este trabajo siguiendo tres aproximaciones que iban desde el nivel más bajo al más alto de integración. Finalmente se utilizó la información fusionada de MEG y dMRI para la caracterización de grupos de sujetos con deterioro cognitivo leve, la detección de esta patología resulta relevante en la identificación precoz de la enfermedad de Alzheimer. Esta tesis está dividida en seis capítulos. En el capítulos 1 se establece un contexto para la introducción de la connectómica dentro de los campos de la neuroimagen y la neurociencia. Posteriormente en este capítulo se describen los objetivos de la tesis, y los objetivos específicos de cada una de las publicaciones científicas que resultaron de este trabajo. En el capítulo 2 se describen los métodos para cada técnica que fue empleada: conectividad estructural, conectividad funcional en resting state, redes cerebrales complejas y teoría de grafos y finalmente se describe la condición de deterioro cognitivo leve y el estado actual en la búsqueda de nuevos biomarcadores diagnósticos. En los capítulos 3, 4 y 5 se han incluido los artículos científicos que fueron producidos a lo largo de esta tesis. Estos han sido incluidos en el formato de la revista en que fueron publicados, estando divididos en introducción, materiales y métodos, resultados y discusión. Todos los métodos que fueron empleados en los artículos están descritos en el capítulo 2 de la tesis. Finalmente, en el capítulo 6 se concluyen los resultados generales de la tesis y se discuten de forma específica los resultados de cada artículo. ABSTRACT In this thesis I apply concepts from mathematics, physics and statistics to the neurosciences. This field benefits from the collaborative work of multidisciplinary teams where physicians, psychologists, engineers and other specialists fight for a common well: the understanding of the brain. Research on this field is still in its early years, being its birth attributed to the neuronal theory of Santiago Ramo´n y Cajal in 1888. In more than one hundred years only a very little percentage of the brain functioning has been discovered, and still much more needs to be explored. Isolated techniques aim at unraveling the system that supports our cognition, nevertheless in order to provide solid evidence in such a field multimodal techniques have arisen, with them we will be able to improve current knowledge about human cognition. Here we focus on the multimodal integration of magnetoencephalography (MEG) and diffusion weighted magnetic resonance imaging. These techniques are sensitive to the magnetic fields emitted by the neuronal currents and to the white matter microstructure, respectively. The combination of such techniques could bring up evidences about structural-functional synergies in the brain information processing and which part of this synergy fails in specific neurological pathologies. In particular, we are interested in the relationship between functional and structural connectivity, and how two integrate this information. We quantify the functional connectivity by studying the phase synchronization or the amplitude correlation between time series obtained by MEG, and so we get an index indicating similarity between neuronal entities, i.e. brain regions. In addition we quantify structural connectivity by performing diffusion tensor estimation from the diffusion weighted images, thus obtaining an indicator of the integrity of the white matter or, if preferred, the strength of the structural connections between regions. These quantifications are then combined following three different approaches, from the lowest to the highest level of integration, in chapters 3, 4 and 5. We finally apply the fused information to the characterization or prediction of mild cognitive impairment, a clinical entity which is considered as an early step in the continuum pathological process of dementia. The dissertation is divided in six chapters. In chapter 1 I introduce connectomics within the fields of neuroimaging and neuroscience. Later in this chapter we describe the objectives of this thesis, and the specific objectives of each of the scientific publications that were produced as result of this work. In chapter 2 I describe the methods for each of the techniques that were employed, namely structural connectivity, resting state functional connectivity, complex brain networks and graph theory, and finally, I describe the clinical condition of mild cognitive impairment and the current state of the art in the search for early biomarkers. In chapters 3, 4 and 5 I have included the scientific publications that were generated along this work. They have been included in in their original format and they contain introduction, materials and methods, results and discussion. All methods that were employed in these papers have been described in chapter 2. Finally, in chapter 6 I summarize all the results from this thesis, both locally for each of the scientific publications and globally for the whole work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MP2RAGE has proven to be a bias-free MR acquisition with excellent contrast between grey and white matter. We investigated the ability of three state-of-the-art algorithms to automatically extract white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) from MPRAGE and MP2RAGE images: unified Segmentation (S) in SPM82 , its extension New Segment (NS), and an in-house Expectation-Maximization Markov Random Field tissue classification3 (EM-MRF) with Graph Cut (GC) optimization4 . Our goal is to quantify the differences between MPRAGE and MP2RAGE-based brain tissue probability maps.