39 resultados para WHIM DESCRIPTORS

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show a procedure for constructing a probabilistic atlas based on affine moment descriptors. It uses a normalization procedure over the labeled atlas. The proposed linear registration is defined by closed-form expressions involving only geometric moments. This procedure applies both to atlas construction as atlas-based segmentation. We model the likelihood term for each voxel and each label using parametric or nonparametric distributions and the prior term is determined by applying the vote-rule. The probabilistic atlas is built with the variability of our linear registration. We have two segmentation strategy: a) it applies the proposed affine registration to bring the target image into the coordinate frame of the atlas or b) the probabilistic atlas is non-rigidly aligning with the target image, where the probabilistic atlas is previously aligned to the target image with our affine registration. Finally, we adopt a graph cut - Bayesian framework for implementing the atlas-based segmentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a level set based variational approach that incorporates shape priors into edge-based and region-based models. The evolution of the active contour depends on local and global information. It has been implemented using an efficient narrow band technique. For each boundary pixel we calculate its dynamic according to its gray level, the neighborhood and geometric properties established by training shapes. We also propose a criterion for shape aligning based on affine transformation using an image normalization procedure. Finally, we illustrate the benefits of the our approach on the liver segmentation from CT images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Common European Framework of Reference for Languages (CEFR) "describes in a comprehensive way what language learners have to learn to do in order to use a language for communication and what knowledge and skills they have to develop so as to be able to act effectively" (Council of Europe, 2001: 1). This paper reports on the findings of two studies whose purpose was to assess written production competence descriptors meant for their inclusion into the Academic and Professional English Language Portfolio KELP) for students of engineering and architecture. The main objective of these studies was to establish whether the language competence descriptors were a satisfactory valid tool in their language programmes from the point of view of clarity, relevance and reliability, as perceived by the students and fellow English for Academic Purposes (RAP) / English for Science and Technology (EST) instructors. The studies shed light on how to improve unsatisfactory descriptors. Results show that the final descriptor lists were on the whole well calibrated and fairly well written: the great majority was considered valid for both teachers and students involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Markerless video-based human pose estimation algorithms face a high-dimensional problem that is frequently broken down into several lower-dimensional ones by estimating the pose of each limb separately. However, in order to do so they need to reliably locate the torso, for which they typically rely on time coherence and tracking algorithms. Their losing track usually results in catastrophic failure of the process, requiring human intervention and thus precluding their usage in real-time applications. We propose a very fast rough pose estimation scheme based on global shape descriptors built on 3D Zernike moments. Using an articulated model that we configure in many poses, a large database of descriptor/pose pairs can be computed off-line. Thus, the only steps that must be done on-line are the extraction of the descriptors for each input volume and a search against the database to get the most likely poses. While the result of such process is not a fine pose estimation, it can be useful to help more sophisticated algorithms to regain track or make more educated guesses when creating new particles in particle-filter-based tracking schemes. We have achieved a performance of about ten fps on a single computer using a database of about one million entries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lagrangian descriptors are a recent technique which reveals geometrical structures in phase space and which are valid for aperiodically time dependent dynamical systems. We discuss a general methodology for constructing them and we discuss a "heuristic argument" that explains why this method is successful. We support this argument by explicit calculations on a benchmark problem. Several other benchmark examples are considered that allow us to assess the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field ("time averages"). In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This poster raises the issue of a research work oriented to the storage, retrieval, representation and analysis of dynamic GI, taking into account The ultimate objective is the modelling and representation of the dynamic nature of geographic features, establishing mechanisms to store geometries enriched with a temporal structure (regardless of space) and a set of semantic descriptors detailing and clarifying the nature of the represented features and their temporality. the semantic, the temporal and the spatiotemporal components. We intend to define a set of methods, rules and restrictions for the adequate integration of these components into the primary elements of the GI: theme, location, time [1]. We intend to establish and incorporate three new structures (layers) into the core of data storage by using mark-up languages: a semantictemporal structure, a geosemantic structure, and an incremental spatiotemporal structure. Thus, data would be provided with the capability of pinpointing and expressing their own basic and temporal characteristics, enabling them to interact each other according to their context, and their time and meaning relationships that could be eventually established

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En esta tesis se aborda la detección y el seguimiento automático de vehículos mediante técnicas de visión artificial con una cámara monocular embarcada. Este problema ha suscitado un gran interés por parte de la industria automovilística y de la comunidad científica ya que supone el primer paso en aras de la ayuda a la conducción, la prevención de accidentes y, en última instancia, la conducción automática. A pesar de que se le ha dedicado mucho esfuerzo en los últimos años, de momento no se ha encontrado ninguna solución completamente satisfactoria y por lo tanto continúa siendo un tema de investigación abierto. Los principales problemas que plantean la detección y seguimiento mediante visión artificial son la gran variabilidad entre vehículos, un fondo que cambia dinámicamente debido al movimiento de la cámara, y la necesidad de operar en tiempo real. En este contexto, esta tesis propone un marco unificado para la detección y seguimiento de vehículos que afronta los problemas descritos mediante un enfoque estadístico. El marco se compone de tres grandes bloques, i.e., generación de hipótesis, verificación de hipótesis, y seguimiento de vehículos, que se llevan a cabo de manera secuencial. No obstante, se potencia el intercambio de información entre los diferentes bloques con objeto de obtener el máximo grado posible de adaptación a cambios en el entorno y de reducir el coste computacional. Para abordar la primera tarea de generación de hipótesis, se proponen dos métodos complementarios basados respectivamente en el análisis de la apariencia y la geometría de la escena. Para ello resulta especialmente interesante el uso de un dominio transformado en el que se elimina la perspectiva de la imagen original, puesto que este dominio permite una búsqueda rápida dentro de la imagen y por tanto una generación eficiente de hipótesis de localización de los vehículos. Los candidatos finales se obtienen por medio de un marco colaborativo entre el dominio original y el dominio transformado. Para la verificación de hipótesis se adopta un método de aprendizaje supervisado. Así, se evalúan algunos de los métodos de extracción de características más populares y se proponen nuevos descriptores con arreglo al conocimiento de la apariencia de los vehículos. Para evaluar la efectividad en la tarea de clasificación de estos descriptores, y dado que no existen bases de datos públicas que se adapten al problema descrito, se ha generado una nueva base de datos sobre la que se han realizado pruebas masivas. Finalmente, se presenta una metodología para la fusión de los diferentes clasificadores y se plantea una discusión sobre las combinaciones que ofrecen los mejores resultados. El núcleo del marco propuesto está constituido por un método Bayesiano de seguimiento basado en filtros de partículas. Se plantean contribuciones en los tres elementos fundamentales de estos filtros: el algoritmo de inferencia, el modelo dinámico y el modelo de observación. En concreto, se propone el uso de un método de muestreo basado en MCMC que evita el elevado coste computacional de los filtros de partículas tradicionales y por consiguiente permite que el modelado conjunto de múltiples vehículos sea computacionalmente viable. Por otra parte, el dominio transformado mencionado anteriormente permite la definición de un modelo dinámico de velocidad constante ya que se preserva el movimiento suave de los vehículos en autopistas. Por último, se propone un modelo de observación que integra diferentes características. En particular, además de la apariencia de los vehículos, el modelo tiene en cuenta también toda la información recibida de los bloques de procesamiento previos. El método propuesto se ejecuta en tiempo real en un ordenador de propósito general y da unos resultados sobresalientes en comparación con los métodos tradicionales. ABSTRACT This thesis addresses on-road vehicle detection and tracking with a monocular vision system. This problem has attracted the attention of the automotive industry and the research community as it is the first step for driver assistance and collision avoidance systems and for eventual autonomous driving. Although many effort has been devoted to address it in recent years, no satisfactory solution has yet been devised and thus it is an active research issue. The main challenges for vision-based vehicle detection and tracking are the high variability among vehicles, the dynamically changing background due to camera motion and the real-time processing requirement. In this thesis, a unified approach using statistical methods is presented for vehicle detection and tracking that tackles these issues. The approach is divided into three primary tasks, i.e., vehicle hypothesis generation, hypothesis verification, and vehicle tracking, which are performed sequentially. Nevertheless, the exchange of information between processing blocks is fostered so that the maximum degree of adaptation to changes in the environment can be achieved and the computational cost is alleviated. Two complementary strategies are proposed to address the first task, i.e., hypothesis generation, based respectively on appearance and geometry analysis. To this end, the use of a rectified domain in which the perspective is removed from the original image is especially interesting, as it allows for fast image scanning and coarse hypothesis generation. The final vehicle candidates are produced using a collaborative framework between the original and the rectified domains. A supervised classification strategy is adopted for the verification of the hypothesized vehicle locations. In particular, state-of-the-art methods for feature extraction are evaluated and new descriptors are proposed by exploiting the knowledge on vehicle appearance. Due to the lack of appropriate public databases, a new database is generated and the classification performance of the descriptors is extensively tested on it. Finally, a methodology for the fusion of the different classifiers is presented and the best combinations are discussed. The core of the proposed approach is a Bayesian tracking framework using particle filters. Contributions are made on its three key elements: the inference algorithm, the dynamic model and the observation model. In particular, the use of a Markov chain Monte Carlo method is proposed for sampling, which circumvents the exponential complexity increase of traditional particle filters thus making joint multiple vehicle tracking affordable. On the other hand, the aforementioned rectified domain allows for the definition of a constant-velocity dynamic model since it preserves the smooth motion of vehicles in highways. Finally, a multiple-cue observation model is proposed that not only accounts for vehicle appearance but also integrates the available information from the analysis in the previous blocks. The proposed approach is proven to run near real-time in a general purpose PC and to deliver outstanding results compared to traditional methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zernike polynomials are a well known set of functions that find many applications in image or pattern characterization because they allow to construct shape descriptors that are invariant against translations, rotations or scale changes. The concepts behind them can be extended to higher dimension spaces, making them also fit to describe volumetric data. They have been less used than their properties might suggest due to their high computational cost. We present a parallel implementation of 3D Zernike moments analysis, written in C with CUDA extensions, which makes it practical to employ Zernike descriptors in interactive applications, yielding a performance of several frames per second in voxel datasets about 2003 in size. In our contribution, we describe the challenges of implementing 3D Zernike analysis in a general-purpose GPU. These include how to deal with numerical inaccuracies, due to the high precision demands of the algorithm, or how to deal with the high volume of input data so that it does not become a bottleneck for the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a methodology for reducing a straight line fitting regression problem to a Least Squares minimization one. This is accomplished through the definition of a measure on the data space that takes into account directional dependences of errors, and the use of polar descriptors for straight lines. This strategy improves the robustness by avoiding singularities and non-describable lines. The methodology is powerful enough to deal with non-normal bivariate heteroscedastic data error models, but can also supersede classical regression methods by making some particular assumptions. An implementation of the methodology for the normal bivariate case is developed and evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This poster raises the issue of a research work oriented to the storage, retrieval, representation and analysis of dynamic GI, taking into account the semantic, the temporal and the spatiotemporal components. We intend to define a set of methods, rules and restrictions for the adequate integration of these components into the primary elements of the GI: theme, location, time [1]. We intend to establish and incorporate three new structures (layers) into the core of data storage by using mark-up languages: a semantictemporal structure, a geosemantic structure, and an incremental spatiotemporal structure. The ultimate objective is the modelling and representation of the dynamic nature of geographic features, establishing mechanisms to store geometries enriched with a temporal structure (regardless of space) and a set of semantic descriptors detailing and clarifying the nature of the represented features and their temporality. Thus, data would be provided with the capability of pinpointing and expressing their own basic and temporal characteristics, enabling them to interact each other according to their context, and their time and meaning relationships that could be eventually established

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Fractal Image Informatics toolbox (Oleschko et al., 2008 a; Torres-Argüelles et al., 2010) was applied to extract, classify and model the topological structure and dynamics of surface roughness in two highly eroded catchments of Mexico. Both areas are affected by gully erosion (Sidorchuk, 2005) and characterized by avalanche-like matter transport. Five contrasting morphological patterns were distinguished across the slope of the bare eroded surface of Faeozem (Queretaro State) while only one (apparently independent on the slope) roughness pattern was documented for Andosol (Michoacan State). We called these patterns ?the roughness clusters? and compared them in terms of metrizability, continuity, compactness, topological connectedness (global and local) and invariance, separability, and degree of ramification (Weyl, 1937). All mentioned topological measurands were correlated with the variance, skewness and kurtosis of the gray-level distribution of digital images. The morphology0 spatial dynamics of roughness clusters was measured and mapped with high precision in terms of fractal descriptors. The Hurst exponent was especially suitable to distinguish between the structure of ?turtle shell? and ?ramification? patterns (sediment producing zone A of the slope); as well as ?honeycomb? (sediment transport zone B) and ?dinosaur steps? and ?corals? (sediment deposition zone C) roughness clusters. Some other structural attributes of studied patterns were also statistically different and correlated with the variance, skewness and kurtosis of gray distribution of multiscale digital images. The scale invariance of classified roughness patterns was documented inside the range of five image resolutions. We conjectured that the geometrization of erosion patterns in terms of roughness clustering might benefit the most semi-quantitative models developed for erosion and sediment yield assessments (de Vente and Poesen, 2005).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This doctoral thesis focuses on the modeling of multimedia systems to create personalized recommendation services based on the analysis of users’ audiovisual consumption. Research is focused on the characterization of both users’ audiovisual consumption and content, specifically images and video. This double characterization converges into a hybrid recommendation algorithm, adapted to different application scenarios covering different specificities and constraints. Hybrid recommendation systems use both content and user information as input data, applying the knowledge from the analysis of these data as the initial step to feed the algorithms in order to generate personalized recommendations. Regarding the user information, this doctoral thesis focuses on the analysis of audiovisual consumption to infer implicitly acquired preferences. The inference process is based on a new probabilistic model proposed in the text. This model takes into account qualitative and quantitative consumption factors on the one hand, and external factors such as zapping factor or company factor on the other. As for content information, this research focuses on the modeling of descriptors and aesthetic characteristics, which influence the user and are thus useful for the recommendation system. Similarly, the automatic extraction of these descriptors from the audiovisual piece without excessive computational cost has been considered a priority, in order to ensure applicability to different real scenarios. Finally, a new content-based recommendation algorithm has been created from the previously acquired information, i.e. user preferences and content descriptors. This algorithm has been hybridized with a collaborative filtering algorithm obtained from the current state of the art, so as to compare the efficiency of this hybrid recommender with the individual techniques of recommendation (different hybridization techniques of the state of the art have been studied for suitability). The content-based recommendation focuses on the influence of the aesthetic characteristics on the users. The heterogeneity of the possible users of these kinds of systems calls for the use of different criteria and attributes to create effective recommendations. Therefore, the proposed algorithm is adaptable to different perceptions producing a dynamic representation of preferences to obtain personalized recommendations for each user of the system. The hypotheses of this doctoral thesis have been validated by conducting a set of tests with real users, or by querying a database containing user preferences - available to the scientific community. This thesis is structured based on the different research and validation methodologies of the techniques involved. In the three central chapters the state of the art is studied and the developed algorithms and models are validated via self-designed tests. It should be noted that some of these tests are incremental and confirm the validation of previously discussed techniques. Resumen Esta tesis doctoral se centra en el modelado de sistemas multimedia para la creación de servicios personalizados de recomendación a partir del análisis de la actividad de consumo audiovisual de los usuarios. La investigación se focaliza en la caracterización tanto del consumo audiovisual del usuario como de la naturaleza de los contenidos, concretamente imágenes y vídeos. Esta doble caracterización de usuarios y contenidos confluye en un algoritmo de recomendación híbrido que se adapta a distintos escenarios de aplicación, cada uno de ellos con distintas peculiaridades y restricciones. Todo sistema de recomendación híbrido toma como datos de partida tanto información del usuario como del contenido, y utiliza este conocimiento como entrada para algoritmos que permiten generar recomendaciones personalizadas. Por la parte de la información del usuario, la tesis se centra en el análisis del consumo audiovisual para inferir preferencias que, por lo tanto, se adquieren de manera implícita. Para ello, se ha propuesto un nuevo modelo probabilístico que tiene en cuenta factores de consumo tanto cuantitativos como cualitativos, así como otros factores de contorno, como el factor de zapping o el factor de compañía, que condicionan la incertidumbre de la inferencia. En cuanto a la información del contenido, la investigación se ha centrado en la definición de descriptores de carácter estético y morfológico que resultan influyentes en el usuario y que, por lo tanto, son útiles para la recomendación. Del mismo modo, se ha considerado una prioridad que estos descriptores se puedan extraer automáticamente de un contenido sin exigir grandes requisitos computacionales y, de tal forma que se garantice la posibilidad de aplicación a escenarios reales de diverso tipo. Por último, explotando la información de preferencias del usuario y de descripción de los contenidos ya obtenida, se ha creado un nuevo algoritmo de recomendación basado en contenido. Este algoritmo se cruza con un algoritmo de filtrado colaborativo de referencia en el estado del arte, de tal manera que se compara la eficiencia de este recomendador híbrido (donde se ha investigado la idoneidad de las diferentes técnicas de hibridación del estado del arte) con cada una de las técnicas individuales de recomendación. El algoritmo de recomendación basado en contenido que se ha creado se centra en las posibilidades de la influencia de factores estéticos en los usuarios, teniendo en cuenta que la heterogeneidad del conjunto de usuarios provoca que los criterios y atributos que condicionan las preferencias de cada individuo sean diferentes. Por lo tanto, el algoritmo se adapta a las diferentes percepciones y articula una metodología dinámica de representación de las preferencias que permite obtener recomendaciones personalizadas, únicas para cada usuario del sistema. Todas las hipótesis de la tesis han sido debidamente validadas mediante la realización de pruebas con usuarios reales o con bases de datos de preferencias de usuarios que están a disposición de la comunidad científica. La diferente metodología de investigación y validación de cada una de las técnicas abordadas condiciona la estructura de la tesis, de tal manera que los tres capítulos centrales se estructuran sobre su propio estudio del estado del arte y los algoritmos y modelos desarrollados se validan mediante pruebas autónomas, sin impedir que, en algún caso, las pruebas sean incrementales y ratifiquen la validación de técnicas expuestas anteriormente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesis doctoral que se presenta realiza un análisis de la evolución del paisaje fluvial de las riberas de los ríos Tajo y Jarama en el entorno de Aranjuez desde una perspectiva múltiple. Contempla y conjuga aspectos naturales, tales como los hidrológicos, geomorfológicos y ecológicos; también culturales, como la regulación hidrológica y la gestión del agua, las intervenciones en cauce y márgenes, la evolución de la propiedad y los cambios de usos del suelo, fundamentalmente. Este análisis ha permitido identificar el sistema de factores, dinámico y complejo, que ha creado este paisaje, así como las interrelaciones, conexiones, condicionantes y dependencias de los descriptores paisajísticos considerados. Por ejemplo, se han estudiado las relaciones cruzadas observadas entre dinámica fluvial-propiedad de la tierra-estado de conservación, cuestiones que hasta la fecha no habían sido tratadas, evaluadas o cuantificadas en otros trabajos dedicados a esta zona. La investigación se ha organizado en tres fases fundamentales que han dado lugar a los capítulos centrales del documento (capítulos 2, 3 y 4). En primer lugar, se ha realizado una caracterización de los factores, naturales y culturales, que organizan el paisaje de este territorio eminentemente fluvial (geomorfología, factores climáticos e hidrológicos, vegetación, propiedad de la tierra y elementos culturales de significación paisajística). A continuación, se ha realizado el estudio de la evolución del paisaje fluvial mediante el análisis de diversos elementos, previamente identificados y caracterizados. Para ello se han procesado imágenes aéreas correspondientes a cinco series temporales así como varios planos antiguos, obteniendo una amplia base de datos que se ha analizado estadísticamente. Finalmente, se han contrastado los resultados parciales obtenidos en los capítulos anteriores, lo que ha permitido identificar relaciones causales entre los factores que organizan el paisaje y la evolución de los elementos que lo constituyen. También, interconexiones entre factores o entre elementos. Este método de trabajo ha resultado muy útil para la comprensión del funcionamiento y evolución de un sistema complejo, como el paisaje de la vega de Aranjuez, un territorio con profundas y antiguas intervenciones culturales donde lo natural, en cualquier caso, siempre subyace. Es posible que la principal aportación de este trabajo, también su diferencia más destacada respecto a otros estudios de paisaje, haya sido mostrar una visión completa y exhaustiva de todos los factores que han intervenido en la conformación y evolución del paisaje fluvial, destacando las relaciones que se establecen entre ellos. Esta manera de proceder puede tener una interesante faceta aplicada, de tal manera que resulta un instrumento muy útil para el diseño de planes de gestión de este territorio fluvial. No en vano, una parte sustancial de la vega del Tajo-Jarama en Aranjuez es un Lugar de Importancia Comunitaria (LIC) y su posterior e ineludible declaración como Zona de Especial Conservación (ZEC) de la Red Natura 2000, de acuerdo con lo establecido en la Directiva 92/43/CE, exige la elaboración de un Plan de Gestión que, en gran medida, podría nutrirse de lo presentado, analizado e interpretado en este trabajo. En este sentido, conviene señalar la conciencia ya asumida de considerar, por su carácter integrador de la realidad territorial, el paisaje como elemento clave para la gestión adecuada de la naturaleza y el territorio. Por otra parte, se considera que los resultados de esta Tesis Doctoral permitirían plantear medidas para la puesta en valor de un paisaje sobresaliente, cuyos límites sobrepasan con creces los que en la actualidad conforman el Paisaje Cultural declarado por la UNESCO. En suma, el análisis de este espacio fluvial realizado con la profundidad y amplitud que permite el método de trabajo seguido puede utilizarse para el diseño de estrategias que dirijan la evolución de este territorio en una línea que garantice su conservación global en términos paisajísticos, patrimoniales y ecológicos, permitiendo además, de este modo, su uso equilibrado como recurso económico, cultural o educativo. This doctoral thesis shows an analysis of fluvial landscape evolution from multiple perspectives on the banks of Tagus and Jarama rivers, around Aranjuez. The thesis contemplates and combines natural features, such as hydrological, geomorphological and ecological features, as well as cultural features, like hydrological regulation and water management, interventions in channels and margins, changes in ownership and land use changes, mainly. This analysis has allowed to identify the factors system, dynamic and complex, that this landscape has created, as well as the interrelationships, connections, constraints and dependencies among considered landscape descriptors. For example, we have studied the relationships observed among fluvial dynamics- land ownership -conservation status, issues not addressed, assessed or quantified up to now in other works about this area. The research is organized into three major phases that led to the paper's central chapters (Chapters 2, 3 and 4). First, there has been a characterization of the factors, both natural and cultural, that organize the landscape of this predominantly fluvial area (geomorphology, climate and hydrological factors, vegetation, land and cultural elements of landscape significance). Then, it was made to study of fluvial landscape evolution by analyzing various elements previously identified and characterized. Aerial images were processed for five series and several old maps, obtaining an extensive database, that has been analyzed statistically. Finally, we have contrasted the partial results obtained in the previous chapters, making it possible to identify causal relationships between the factors that organize the landscape and the evolution of the elements that constitute it. This working method has been very useful for understanding the operation and evolution of a complex system, as the landscape of the Vega de Aranjuez, a territory with deep and ancient cultural interventions where anyway, nature feature always lies. It is possible that the main contribution of this work, also its most prominent difference compared with other studies of landscape, has been to show a complete and exhaustive view of all factors involved in the formation and evolution of the fluvial landscape, highlighting the relationships established among them. This approach could have an interesting applied facet, so that is a very useful tool for designing management plans on this river territory. Not surprisingly, a substantial part of the valley of the Tagus-Jarama in Aranjuez is a Site of Community Importance (SCI) and their subsequent and inevitable declaration as Special Area of Conservation (SAC) of the Natura 2000 network, in accordance with the provisions Directive 92/43/EC, requires the development of a management plan that largely could draw on what was presented, analyzed and interpreted in this paper. In this regard, it should be noted conscience and assumed to consider, on the inclusiveness of territorial reality, the landscape as a key element for the proper management of nature and territory. On the other hand, it is considered that the results of this thesis allow to propose measures for enhancement of outstanding scenery, which go well beyond the boundaries that currently the Cultural Landscape declared by UNESCO. In sum, the analysis of this river area made with the depth and breadth that enables working method can be used to design strategies that address the evolution of this territory in a line that guarantees global conservation landscape terms, heritage and ecological, also, allowing its use as a balancing economic, cultural or educational resource.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the effect of adding soy protein isolate (SPI) and long-chain perception, trained and untrained panel inulin (INL) blends with 10 different SPI : INL ratios on the textural, rheological and 17 microstructural properties of freshly made and frozen/thawed potato puree. All the potato puree samples were subjected to a sensory texture pro?le analysis and a 21 trained panel rated the intensity of six descriptors, while an untrained panel did the same on six selected frozen/thawed products. The main SPI : INL ratio effect remained signi?cant for all the descriptors evaluated, when the analysis of variance was applied considering the untrained assessors as random effects. However, only trained panel scores for creaminess corresponded well with untrained assessor. Rheological ?ow index values were linked with variations in perceived consistency, and geometric and surface textural attributes were explained by structural features such as the presence of INL crystallites and SPI coarse strands.