6 resultados para WATER RESERVOIR

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Of the south of Spain, near the province of Cordova, in a tributary of the Guadalquivir River it has been constructed during the years 2004 to 2007 the reservoir called El Arenoso. El Arenoso reservoir that belongs to Environment Ministry is destined to downstream Guadalquivir’s water supply and the general regulation of the river. The dam is located on the same name river and it is next to the Montoro’s municipal district, 41 km northeast of Cordova. The main work consists on an embankment dam, with central clay core, and slates and greywacke shoulders. The core is covered downstream with a filter material and upstream with a transition material. The dimensions of the dam are 80 m high, 1.480 m long at its crest, and it has been needed more than 3 million m3 of materials, creating a waterproof barrier able to keep 160 hm3 as a useful reservoir. In the zone of the core is located the chamber of valves with a horizontal clearance of 10 m and a vertical clearance of 14,517 m. The present article exposes the most important characteristics of project and construction, of valves chamber of the Arenoso reservoir.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil erosion is a serious environmental threat in the Mediterranean region due to torrential rainfalls, and it contributes to the degradation of agricultural land. Techniques such as rainwater harvesting may improve soil water storage and increase agricultural productivity, which could result in more effective land usage. Reservoir tillage is an effective system of harvesting rainwater, but it has not been scientifically evaluated like other tillage systems. Its suitability for the conditions in Spain has not been determined. To investigate and quantify water storage from reservoir tillage and how it could be adapted to improve infiltration of harvested rainwater, a laboratory-scale rainfall simulator was developed. Rainfall characteristics, including rainfall intensity, spatial uniformity and raindrop size, confirm that natural rainfall conditions are simulated with sufficient accuracy. The simulator was auto-controlled by a solenoid valve and three pressure nozzles were used to spray water corresponding to five rainfall intensities ranging from 36 to 112 mm h-1 for 3 to 101-year return period with uniformity coefficients between 83 and 94%. In order to assess the reservoir tillage method under surface slopes of 0, 5, and 10%, three soil scooping devices with identical volume were used to make depressions in the following forms: a) truncated square pyramid, b) triangular prism, and c) truncated cone. These depressions were compared to a control soil surface with no depression. For the loam soil used in this study, results show that reservoir tillage was able to reduce soil erosion and surface runoff and significantly increase infiltration. There was significant difference between the depressions and the control. Compared to the control, depression (a) reduced surface runoff by about 61% and the sediment yield concentration by about 79%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multivariate analysis on flood variables is needed to design some hydraulic structures like dams, as the complexity of the routing process in a reservoir requires a representation of the full hydrograph. In this work, a bivariate copula model was used to obtain the bivariate joint distribution of flood peak and volume, in order to know the probability of occurrence of a given inflow hydrograph. However, the risk of dam overtopping is given by the maximum water elevation reached during the routing process, which depends on the hydrograph variables, the reservoir volume and the spillway crest length. Consequently, an additional bivariate return period, the so-called routed return period, was defined in terms of risk of dam overtopping based on this maximum water elevation obtained after routing the inflow hydrographs. The theoretical return periods, which give the probability of occurrence of a hydrograph prior to accounting for the reservoir routing, were compared with the routed return period, as in both cases hydrographs with the same probability will draw a curve in the peak-volume space. The procedure was applied to the case study of the Santillana reservoir in Spain. Different reservoir volumes and spillway lengths were considered to investigate the influence of the dam and reservoir characteristics on the results. The methodology improves the estimation of the Design Flood Hydrograph and can be applied to assess the risk of dam overtopping

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The area cultivated using conservation tillage has recently increased in central Spain. However, soil compaction and water retention with conservation tillage still remains a genuine concern for landowners in this region be- cause of its potential effect on the crop growth and yield. The aim of this research is to determine the short- term influences of four tillage treatments on soil physical properties. In the experiment, bulk density, cone index, soil water potential, soil temperature and maize (Zea mays L.) productivity have been measured. A field experiment was established in spring of 2013 on a loamy soil. The experiment compared four tillage methods (zero tillage, ZT; reservoir tillage, RT; minimum tillage, MT; and conventional tillage, CT). Soil bulk density and soil cone index were measured during maize growing season and at harvesting time. Furthermore, the soil water potential was monitored by using a wireless sensors network with sensors at 20 and 40 cm depths. Also, soil temperatures were registered at depths of 5 and 12 cm. Results indicated that there were significant differ- ences between soil bulk density and cone index of ZT method and those of RT, MT, and CT, during the growing season; although, this difference was not significant at the time of harvesting in some soil layers. Overall, in most soil layers, tillage practice affected bulk density and cone index in the order: ZT N RT N MT N CT. Regardless oftheentireobservationperiod,results exhibited that soils under ZT and RT treatments usually resulted in higher water potential and lower soil temperature than the other two treatments at both soil depths. In addition, clear differences in maize grain yield were observed between ZT and CT treatments, with a grain yield (up to 15.4%) increase with the CT treatment. On the other hand, no significant differences among (RT, MT, and CT) on maizeyieldwerefound.Inconclusion,the impact of soil compaction increase and soil temperature decrease,pro- duced by ZT treatment is a potential reason for maize yield reduction in this tillage method. We found that RT could be certainly a viable option for farmers incentral Spain,particularly when switching to conservation tillage from conventional tillage. This technique showed a moderate and positive effect on soil physical properties and increased maize yields compared to ZT and MT, and provides an opportunity to stabilize maize yields compared to CT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a need for in-situ soil moisture conservation in arid and semi-arid regions due to insufficient rainfall for agriculture. For this purpose, a combination implement [integrated reservoir tillage system (RT)] comprised of a single-row chisel plow, single-row spike tooth harrow, modified seeder, and spiked roller was developed and compared to the popular tillage practices, viz., minimum tillage (MT) and conventional tillage (CT) in an arid Mediterranean environment in Egypt. The different tillage practices were conducted at tillage depths of 15, 20, and 25 cm and forward speeds of 0.69, 1, 1.25, and 1.53 m s-1. Some soil physical properties, runoff, soil loss, water harvesting efficiency and yield of wheat were evaluated. The different tillage practices caused significant differences in soil physical properties as the RT increased soil infiltration, producing a rate of 48% and 65% higher than that obtained in MT and CT, respectively. The lowest values of runoff and soil loss were recorded under RT as 4.91 mm and 0.65 t ha-1, whereas the highest values were recorded under CT as 11.36 mm and 1.66 t ha-1, respectively. In conclusion, the RT enhanced the infiltration rate, increased water harvesting efficiency, reduced runoff and achieved the highest yield of wheat. The best tillage operating parameters appeared to be at a tillage depth of 20 cm and speed between 1.00 and 1.25 m s-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil erosion is a serious environmental threat in the Mediterranean region due to torrential rainfalls, and it contributes to the degradation of agricultural land. Techniques such as rainwater harvesting may improve soil water storage and increase agricultural productivity, which could result in more effective land usage. Reservoir tillage is an effective system of harvesting rainwater, but it has not been scientifically evaluated like other tillage systems. Its suitability for the conditions in Spain has not been determined. To investigate and quantify water storage from reservoir tillage and how it could be adapted to improve infiltration of harvested rainwater, a laboratory-scale rainfall simulator was developed. Rainfall characteristics, including rainfall intensity, spatial uniformity and raindrop size, confirm that natural rainfall conditions are simulated with sufficient accuracy. The simulator was auto-controlled by a solenoid valve and three pressure nozzles were used to spray water corresponding to five rainfall intensities ranging from 36 to 112 mm h− 1 for 3 to 101-year return period with uniformity coefficients between 83 and 94%. In order to assess the reservoir tillage method under surface slopes of 0, 5, and 10%, three soil scooping devices with identical volume were used to make depressions in the following forms: a) truncated square pyramid, b) triangular prism, and c) truncated cone. These depressions were compared to a control soil surface with no depression. For the loam soil used in this study, results show that reservoir tillage was able to reduce soil erosion and surface runoff and significantly increase infiltration. There was significant difference between the depressions and the control. Compared to the control, depression (a) reduced surface runoff by about 61% and the sediment yield concentration by about 79%.