31 resultados para Voltage-source Converter (VSC)

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper fault detection and isolation (FDI) schemes are applied in the context of the surveillance of emerging faults in an electrical circuit. The FDI problem is studied on a noisy nonlinear circuit, where both abrupt and incipient faults in the voltage source are considered. A rigorous analysis of fault detectability precedes the application of the fault detection (FD) scheme; then, the fault isolation (FI) phase is accomplished with two alternative FI approaches, proposed as new extensions of that FD approach. Numerical simulations illustrate the applicability of the mentioned schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interest in LED lighting has been growing recently due to the high efficacy, lifelime and ruggedness that this technology offers. However the key element to guarantee those parameters with these new electronic devices is to keep under control the working temperature of the semiconductor crystal. This paper propases a LED lamp design that fulfils the requ irements of a PV lighting systems, whose main quality criteria is reliability. It uses directly as a power supply a non·stabilized constant voltage source, as batteries. An electronic control architecture is used to regulate the current applied to the LEO matri)( according to their temperature and the voltage output value of the batteries with two pulse modulation signals (PWM) signals. The first one connects and disconnects the LEOs to the power supply and the second one connects and disconnects several emitters to the electric circuit changing its overall impedance. A prototype of the LEO lamp has been implemented and tested at different temperaturas and battery voltages.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This work is related to the improvement of the dynamic performance of the Buck converter by means of introducing an additional power path that virtually increase s the output capacitance during transients, thus improving the output impedance of the converter. It is well known that in VRM applications, with wide load steps, voltage overshoots and undershoots ma y lead to undesired performance of the load. To solve this problem, high-bandwidth high-switching frequency power converter s can be applied to reduce the transient time or a big output capacitor can be applied to reduce the output impedance. The first solution can degrade the efficiency by increasing switching losses of the MOSFETS, and the second solution is penalizing the cost and size of the output filter. The additional energy path, as presented here, is introduced with the Output Impedance Correction Circuit (OICC) based on the Controlled Current Source (CCS). The OICC is using CCS to inject or extract a current n - 1 times larger than the output capacitor current, thus virtually increasing n times the value of the output capacitance during the transients. This feature allows the usage of a low frequency Buck converter with smaller capacitor but satisfying the dynamic requirements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In high performance digital systems as well as in RF systems, voltage scaling and modulation techniques have been adopted to achieve a more efficient processing of the energy. The implementation of such techniques relies on a power supply that is capable of rapidly adjusting the system supply voltage. In this paper, a pulsewidth modulation multiphase topology with magnetic coupling is proposed for its use in voltage modulation techniques. Since the magnetic coupling in this topology is done with transformers instead of coupled inductors, the energy storage is reduced and very fast voltage changes are achieved. Advantages and drawbacks of this topology have been previously presented in the literature and in this paper, the design criteria for implementing a power supply for the envelope elimination and restoration technique in an RF system are presented along with an implementation of the power supply.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work is related to the output impedance improvement of a Multiphase Buck converter with Peak Current Mode Control (PCMC) by means of introducing an additional power path that virtually increases the output capacitance during transients. Various solutions that can be employed to improve the dynamic behavior of the converter system exist, but nearly all solutions are developed for a Single Phase Buck converter with Voltage Mode Control (VMC), while in the VRM applications, due to the high currents, the system is usually implemented as a Multiphase Buck Converter with Current Mode Control. The additional energy path, as presented here, is introduced with the Output Impedance Correction Circuit (OICC) based on the Controlled Current Source (CCS). The OICC is used to inject or extract a current n-1 times larger than the output capacitor current, thus virtually increasing n times the value of the output capacitance during the transients. Furthermore, this work extends the OICC concept to a Multiphase Buck Converter system while comparing proposed solution with the system that has n times bigger output capacitor. In addition, the OICC is implemented as a Synchronous Buck Converter with PCMC, thus reducing its influence on the system efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an interleaved multiphase buck converter with minimum time control strategy for envelope amplifiers in high efficiency RF power amplifiers. The solution of the envelope amplifier is to combine the proposed converter with a linear regulator in series. High system efficiency can be obtained through modulating the supply voltage of the envelope amplifier with the fast output voltage variation of the converter working with several particular duty cycles that achieve total ripple cancellation. The transient model for minimum time control is explained, and the calculation of transient times that are pre-calculated and inserted into a look-up table is presented. The filter design trade-off that limits capability of envelope modulation is also discussed. The experimental results verify the fast voltage transient obtained with a 4-phase buck prototype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an interleaved multiphase buck converter with minimum time control strategy for envelope amplifiers in high efficiency RF power amplifiers is proposed. The solution for the envelope amplifier is to combine the proposed converter with a linear regulator in series. High efficiency of envelope amplifier can be obtained through modulating the supply voltage of the linear regulator. Instead of tracking the envelope, the buck converter has discrete output voltage that corresponding to particular duty cycles which achieve total ripple cancellation. The transient model for minimum time control is explained, and the calculation of transient times that are pre-calculated and inserted into a lookup table is presented. The filter design trade-off that limits capability of envelope modulation is also discussed. The experimental results verify the fast voltage transient obtained with a 4-phase buck prototype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power amplifier supplied with constant supply voltage has very low efficiency in the transmitter. A DC-DC converter in series with a linear regulator can be used to obtain voltage modulation. Since this converter should be able to change the output voltage very fast, a multiphase buck converter with a minimum time control strategy is proposed. To modulate supply voltage of the envelope amplifier, the multiphase converter works with some particular duty cycle (i/n, i=1, 2 ... n, n is the number of phase) to generate discrete output voltages, and in these duty cycles the output current ripple can be completely cancelled. The transition times for the minimum time are pre-calculated and inserted in a look-up table. The theoretical background, the system model that is necessary in order to calculate the transition times and the experimental results obtained with a 4-phase buck prototype are given

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The operation of a multiphase topology, ideally, without energy storage presents the advantage of achieving very high efficiency over a wide load range as well as a fast dynamic response. However, ideal no-energy storage operation also implies a limitation in the regulation capability of the topology, the output voltage can only take discrete values. These features (high efficiency and discrete regulation capability) of the proposed energy conversion strategy enable the topology as a candidate for `DC-DC transformer' applications. The advantages, drawbacks and the operating principle of this concept, implemented with a `closed chain' magnetic structure have been already presented. In this work, the minimum energy storage operation, is applied to two different magnetic structures. These magnetic structures are called `closed chain' and `pyramidal' the main advantage of the `pyramidal' coupling structure is to improve the size of the converter without increasing the operating frequency. Both magnetic structures are analyzed, compared and experimentally implemented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, filter design methodology and application of GaN HEMTs for high efficiency Envelope Amplifier in RF transmitters are proposed. The main objectives of the filter design are generation of the envelope reference with the minimum possible distortion and high efficiency of the amplifier obtained by the optimum trade-off between conduction and switching losses. This optimum point was determined using power losses model for synchronous buck with sinusoidal output voltage and experimental results showed good correspondence with the model and verified the proposed methodology. On the other hand, comparing to Si MOSFETs, GaN HEMTs can provide higher efficiency of the envelope amplifier, due to superior conductivity and switching characteristics. Experimental results verified benefits of GaN devices comparing to the appliance of Si switching devices with very good Figure Of Merit, for this particular application

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical linear amplifiers such as A, AB and B offer very good linearity suitable for RF power amplifiers. However, its inherent low efficiency limits its use especially in base-stations that manage tens or hundreds of Watts. The use of linearization techniques such as Envelope Elimination and Restoration (EER) allow an increase of efficiency keeping good linearity. This technique requires a very fast dc-dc power converter to provide variable voltage supply to the power amplifier. In this paper, several alternatives are analyzed to implement the envelope amplifier based on a cascade association of a switched dc-dc converter and a linear regulator. A simplified version of this approach is also suitable to operate with Envelope Tracking technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulse-width modulation is widely used to control electronic converters. One of the most topologies used for high DC voltage/low DC voltage conversion is the Buck converter. It is obtained as a second order system with a LC filter between the switching subsystem and the load. The use of a coil with an amorphous magnetic material core instead of air core lets design converters with smaller size. If high switching frequencies are used for obtaining high quality voltage output, the value of the auto inductance L is reduced throughout the time. Then, robust controllers are needed if the accuracy of the converter response must not be affected by auto inductance and load variations. This paper presents a robust controller for a Buck converter based on a state space feedback control system combined with an additional virtual space variable which minimizes the effects of the inductance and load variations when a not-toohigh switching frequency is applied. The system exhibits a null steady-state average error response for the entire range of parameter variations. Simulation results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are many the requirements that modern power converters should fulfill. Most of the applications where these converters are used, demand smaller converters with high efficiency, improved power density and a fast dynamic response. For instance, loads like microprocessors demand aggressive current steps with very high slew rates (100A/mus and higher); besides, during these load steps, the supply voltage of the microprocessor should be kept within tight limits in order to ensure its correct performance. The accomplishment of these requirements is not an easy task; complex solutions like advanced topologies - such as multiphase converters- as well as advanced control strategies are often needed. Besides, it is also necessary to operate the converter at high switching frequencies and to use capacitors with high capacitance and low ESR. Improving the dynamic response of power converters does not rely only on the control strategy but also the power topology should be suited to enable a fast dynamic response. Moreover, in later years, a fast dynamic response does not only mean accomplishing fast load steps but output voltage steps are gaining importance as well. At least, two applications that require fast voltage changes can be named: Low power microprocessors. In these devices, the voltage supply is changed according to the workload and the operating frequency of the microprocessor is changed at the same time. An important reduction in voltage dependent losses can be achieved with such changes. This technique is known as Dynamic Voltage Scaling (DVS). Another application where important energy savings can be achieved by means of changing the supply voltage are Radio Frequency Power Amplifiers. For example, RF architectures based on ‘Envelope Tracking’ and ‘Envelope Elimination and Restoration’ techniques can take advantage of voltage supply modulation and accomplish important energy savings in the power amplifier. However, in order to achieve these efficiency improvements, a power converter with high efficiency and high enough bandwidth (hundreds of kHz or even tens of MHz) is necessary in order to ensure an adequate supply voltage. The main objective of this Thesis is to improve the dynamic response of DC-DC converters from the point of view of the power topology. And the term dynamic response refers both to the load steps and the voltage steps; it is also interesting to modulate the output voltage of the converter with a specific bandwidth. In order to accomplish this, the question of what is it that limits the dynamic response of power converters should be answered. Analyzing this question leads to the conclusion that the dynamic response is limited by the power topology and specifically, by the filter inductance of the converter which is found in series between the input and the output of the converter. The series inductance is the one that determines the gain of the converter and provides the regulation capability. Although the energy stored in the filter inductance enables the regulation and the capability of filtering the output voltage, it imposes a limitation which is the concern of this Thesis. The series inductance stores energy and prevents the current from changing in a fast way, limiting the slew rate of the current through this inductor. Different solutions are proposed in the literature in order to reduce the limit imposed by the filter inductor. Many publications proposing new topologies and improvements to known topologies can be found in the literature. Also, complex control strategies are proposed with the objective of improving the dynamic response in power converters. In the proposed topologies, the energy stored in the series inductor is reduced; examples of these topologies are Multiphase converters, Buck converter operating at very high frequency or adding a low impedance path in parallel with the series inductance. Control techniques proposed in the literature, focus on adjusting the output voltage as fast as allowed by the power stage; examples of these control techniques are: hysteresis control, V 2 control, and minimum time control. In some of the proposed topologies, a reduction in the value of the series inductance is achieved and with this, the energy stored in this magnetic element is reduced; less stored energy means a faster dynamic response. However, in some cases (as in the high frequency Buck converter), the dynamic response is improved at the cost of worsening the efficiency. In this Thesis, a drastic solution is proposed: to completely eliminate the series inductance of the converter. This is a more radical solution when compared to those proposed in the literature. If the series inductance is eliminated, the regulation capability of the converter is limited which can make it difficult to use the topology in one-converter solutions; however, this topology is suitable for power architectures where the energy conversion is done by more than one converter. When the series inductor is eliminated from the converter, the current slew rate is no longer limited and it can be said that the dynamic response of the converter is independent from the switching frequency. This is the main advantage of eliminating the series inductor. The main objective, is to propose an energy conversion strategy that is done without series inductance. Without series inductance, no energy is stored between the input and the output of the converter and the dynamic response would be instantaneous if all the devices were ideal. If the energy transfer from the input to the output of the converter is done instantaneously when a load step occurs, conceptually it would not be necessary to store energy at the output of the converter (no output capacitor COUT would be needed) and if the input source is ideal, the input capacitor CIN would not be necessary. This last feature (no CIN with ideal VIN) is common to all power converters. However, when the concept is actually implemented, parasitic inductances such as leakage inductance of the transformer and the parasitic inductance of the PCB, cannot be avoided because they are inherent to the implementation of the converter. These parasitic elements do not affect significantly to the proposed concept. In this Thesis, it is proposed to operate the converter without series inductance in order to improve the dynamic response of the converter; however, on the other side, the continuous regulation capability of the converter is lost. It is said continuous because, as it will be explained throughout the Thesis, it is indeed possible to achieve discrete regulation; a converter without filter inductance and without energy stored in the magnetic element, is capable to achieve a limited number of output voltages. The changes between these output voltage levels are achieved in a fast way. The proposed energy conversion strategy is implemented by means of a multiphase converter where the coupling of the phases is done by discrete two-winding transformers instead of coupledinductors since transformers are, ideally, no energy storing elements. This idea is the main contribution of this Thesis. The feasibility of this energy conversion strategy is first analyzed and then verified by simulation and by the implementation of experimental prototypes. Once the strategy is proved valid, different options to implement the magnetic structure are analyzed. Three different discrete transformer arrangements are studied and implemented. A converter based on this energy conversion strategy would be designed with a different approach than the one used to design classic converters since an additional design degree of freedom is available. The switching frequency can be chosen according to the design specifications without penalizing the dynamic response or the efficiency. Low operating frequencies can be chosen in order to favor the efficiency; on the other hand, high operating frequencies (MHz) can be chosen in order to favor the size of the converter. For this reason, a particular design procedure is proposed for the ‘inductorless’ conversion strategy. Finally, applications where the features of the proposed conversion strategy (high efficiency with fast dynamic response) are advantageus, are proposed. For example, in two-stage power architectures where a high efficiency converter is needed as the first stage and there is a second stage that provides the fine regulation. Another example are RF power amplifiers where the voltage is modulated following an envelope reference in order to save power; in this application, a high efficiency converter, capable of achieving fast voltage steps is required. The main contributions of this Thesis are the following: The proposal of a conversion strategy that is done, ideally, without storing energy in the magnetic element. The validation and the implementation of the proposed energy conversion strategy. The study of different magnetic structures based on discrete transformers for the implementation of the proposed energy conversion strategy. To elaborate and validate a design procedure. To identify and validate applications for the proposed energy conversion strategy. It is important to remark that this work is done in collaboration with Intel. The particular features of the proposed conversion strategy enable the possibility of solving the problems related to microprocessor powering in a different way. For example, the high efficiency achieved with the proposed conversion strategy enables it as a good candidate to be used for power conditioning, as a first stage in a two-stage power architecture for powering microprocessors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intermediate band solar cell (IBSC) is based on a novel photovoltaic concept and has a limiting efficiency of 63.2%, which compares favorably with the 40.7% efficiency of a conventional, single junction solar cell. It is characterized by a material hosting a collection of energy levels within its bandgap, allowing the cell to exploit photons with sub-bandgap energies in a two-step absorption process, thus improving the utilization of the solar spectrum. However, these intermediate levels are often regarded as an inherent source of supplementary recombination, although this harmful effect can in theory be counteracted by the use of concentrated light. We present here a novel, low-temperature characterization technique using concentrated light that reveals how the initially enhanced recombination in the IBSC is reduced so that its open-circuit voltage is completely recovered and reaches that of a conventional solar cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is related to the improvement of the output impedance of the Buck converter by means of introducing an additional power path that virtually increases the output capacitance during transients. It is well known that in VRM applications, with wide load steps, voltage overshoots and undershoots may lead to undesired performance of the load. To solve this problem, high-bandwidth high-switching frequency power converters can be applied to reduce the transient time or a big output capacitor can be applied to reduce the output impedance. The first solution can degrade the efficiency by increasing switching losses of the MOSFETS, and the second solution is penalizing the cost and size of the output filter. The Output Impedance Correction Circuit (OICC), as presented here, is used to inject or extract a current n-1 times larger than the output capacitor current, thus virtually increasing n times the value of the output capacitance during the transients. This feature allows the usage of a low frequency Buck converter with smaller capacitor but satisfying the dynamic requirements.