6 resultados para Voltage levels

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays computing platforms consist of a very large number of components that require to be supplied with diferent voltage levels and power requirements. Even a very small platform, like a handheld computer, may contain more than twenty diferent loads and voltage regulators. The power delivery designers of these systems are required to provide, in a very short time, the right power architecture that optimizes the performance, meets electrical specifications plus cost and size targets. The appropriate selection of the architecture and converters directly defines the performance of a given solution. Therefore, the designer needs to be able to evaluate a significant number of options in order to know with good certainty whether the selected solutions meet the size, energy eficiency and cost targets. The design dificulties of selecting the right solution arise due to the wide range of power conversion products provided by diferent manufacturers. These products range from discrete components (to build converters) to complete power conversion modules that employ diferent manufacturing technologies. Consequently, in most cases it is not possible to analyze all the alternatives (combinations of power architectures and converters) that can be built. The designer has to select a limited number of converters in order to simplify the analysis. In this thesis, in order to overcome the mentioned dificulties, a new design methodology for power supply systems is proposed. This methodology integrates evolutionary computation techniques in order to make possible analyzing a large number of possibilities. This exhaustive analysis helps the designer to quickly define a set of feasible solutions and select the best trade-off in performance according to each application. The proposed approach consists of two key steps, one for the automatic generation of architectures and other for the optimized selection of components. In this thesis are detailed the implementation of these two steps. The usefulness of the methodology is corroborated by contrasting the results using real problems and experiments designed to test the limits of the algorithms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are many the requirements that modern power converters should fulfill. Most of the applications where these converters are used, demand smaller converters with high efficiency, improved power density and a fast dynamic response. For instance, loads like microprocessors demand aggressive current steps with very high slew rates (100A/mus and higher); besides, during these load steps, the supply voltage of the microprocessor should be kept within tight limits in order to ensure its correct performance. The accomplishment of these requirements is not an easy task; complex solutions like advanced topologies - such as multiphase converters- as well as advanced control strategies are often needed. Besides, it is also necessary to operate the converter at high switching frequencies and to use capacitors with high capacitance and low ESR. Improving the dynamic response of power converters does not rely only on the control strategy but also the power topology should be suited to enable a fast dynamic response. Moreover, in later years, a fast dynamic response does not only mean accomplishing fast load steps but output voltage steps are gaining importance as well. At least, two applications that require fast voltage changes can be named: Low power microprocessors. In these devices, the voltage supply is changed according to the workload and the operating frequency of the microprocessor is changed at the same time. An important reduction in voltage dependent losses can be achieved with such changes. This technique is known as Dynamic Voltage Scaling (DVS). Another application where important energy savings can be achieved by means of changing the supply voltage are Radio Frequency Power Amplifiers. For example, RF architectures based on ‘Envelope Tracking’ and ‘Envelope Elimination and Restoration’ techniques can take advantage of voltage supply modulation and accomplish important energy savings in the power amplifier. However, in order to achieve these efficiency improvements, a power converter with high efficiency and high enough bandwidth (hundreds of kHz or even tens of MHz) is necessary in order to ensure an adequate supply voltage. The main objective of this Thesis is to improve the dynamic response of DC-DC converters from the point of view of the power topology. And the term dynamic response refers both to the load steps and the voltage steps; it is also interesting to modulate the output voltage of the converter with a specific bandwidth. In order to accomplish this, the question of what is it that limits the dynamic response of power converters should be answered. Analyzing this question leads to the conclusion that the dynamic response is limited by the power topology and specifically, by the filter inductance of the converter which is found in series between the input and the output of the converter. The series inductance is the one that determines the gain of the converter and provides the regulation capability. Although the energy stored in the filter inductance enables the regulation and the capability of filtering the output voltage, it imposes a limitation which is the concern of this Thesis. The series inductance stores energy and prevents the current from changing in a fast way, limiting the slew rate of the current through this inductor. Different solutions are proposed in the literature in order to reduce the limit imposed by the filter inductor. Many publications proposing new topologies and improvements to known topologies can be found in the literature. Also, complex control strategies are proposed with the objective of improving the dynamic response in power converters. In the proposed topologies, the energy stored in the series inductor is reduced; examples of these topologies are Multiphase converters, Buck converter operating at very high frequency or adding a low impedance path in parallel with the series inductance. Control techniques proposed in the literature, focus on adjusting the output voltage as fast as allowed by the power stage; examples of these control techniques are: hysteresis control, V 2 control, and minimum time control. In some of the proposed topologies, a reduction in the value of the series inductance is achieved and with this, the energy stored in this magnetic element is reduced; less stored energy means a faster dynamic response. However, in some cases (as in the high frequency Buck converter), the dynamic response is improved at the cost of worsening the efficiency. In this Thesis, a drastic solution is proposed: to completely eliminate the series inductance of the converter. This is a more radical solution when compared to those proposed in the literature. If the series inductance is eliminated, the regulation capability of the converter is limited which can make it difficult to use the topology in one-converter solutions; however, this topology is suitable for power architectures where the energy conversion is done by more than one converter. When the series inductor is eliminated from the converter, the current slew rate is no longer limited and it can be said that the dynamic response of the converter is independent from the switching frequency. This is the main advantage of eliminating the series inductor. The main objective, is to propose an energy conversion strategy that is done without series inductance. Without series inductance, no energy is stored between the input and the output of the converter and the dynamic response would be instantaneous if all the devices were ideal. If the energy transfer from the input to the output of the converter is done instantaneously when a load step occurs, conceptually it would not be necessary to store energy at the output of the converter (no output capacitor COUT would be needed) and if the input source is ideal, the input capacitor CIN would not be necessary. This last feature (no CIN with ideal VIN) is common to all power converters. However, when the concept is actually implemented, parasitic inductances such as leakage inductance of the transformer and the parasitic inductance of the PCB, cannot be avoided because they are inherent to the implementation of the converter. These parasitic elements do not affect significantly to the proposed concept. In this Thesis, it is proposed to operate the converter without series inductance in order to improve the dynamic response of the converter; however, on the other side, the continuous regulation capability of the converter is lost. It is said continuous because, as it will be explained throughout the Thesis, it is indeed possible to achieve discrete regulation; a converter without filter inductance and without energy stored in the magnetic element, is capable to achieve a limited number of output voltages. The changes between these output voltage levels are achieved in a fast way. The proposed energy conversion strategy is implemented by means of a multiphase converter where the coupling of the phases is done by discrete two-winding transformers instead of coupledinductors since transformers are, ideally, no energy storing elements. This idea is the main contribution of this Thesis. The feasibility of this energy conversion strategy is first analyzed and then verified by simulation and by the implementation of experimental prototypes. Once the strategy is proved valid, different options to implement the magnetic structure are analyzed. Three different discrete transformer arrangements are studied and implemented. A converter based on this energy conversion strategy would be designed with a different approach than the one used to design classic converters since an additional design degree of freedom is available. The switching frequency can be chosen according to the design specifications without penalizing the dynamic response or the efficiency. Low operating frequencies can be chosen in order to favor the efficiency; on the other hand, high operating frequencies (MHz) can be chosen in order to favor the size of the converter. For this reason, a particular design procedure is proposed for the ‘inductorless’ conversion strategy. Finally, applications where the features of the proposed conversion strategy (high efficiency with fast dynamic response) are advantageus, are proposed. For example, in two-stage power architectures where a high efficiency converter is needed as the first stage and there is a second stage that provides the fine regulation. Another example are RF power amplifiers where the voltage is modulated following an envelope reference in order to save power; in this application, a high efficiency converter, capable of achieving fast voltage steps is required. The main contributions of this Thesis are the following: The proposal of a conversion strategy that is done, ideally, without storing energy in the magnetic element. The validation and the implementation of the proposed energy conversion strategy. The study of different magnetic structures based on discrete transformers for the implementation of the proposed energy conversion strategy. To elaborate and validate a design procedure. To identify and validate applications for the proposed energy conversion strategy. It is important to remark that this work is done in collaboration with Intel. The particular features of the proposed conversion strategy enable the possibility of solving the problems related to microprocessor powering in a different way. For example, the high efficiency achieved with the proposed conversion strategy enables it as a good candidate to be used for power conditioning, as a first stage in a two-stage power architecture for powering microprocessors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This PhD work is focused on liquid crystal based tunable phase devices with special emphasis on their design and manufacturing. In the course of the work a number of new manufacturing technologies have been implemented in the UPM clean room facilities, leading to an important improvement in the range of devices being manufactured in the laboratory. Furthermore, a number of novel phase devices have been developed, all of them including novel electrodes, and/or alignment layers. The most important manufacturing progress has been the introduction of reactive ion etching as a tool for achieving high resolution photolithography on indium-tin-oxide (ITO) coated glass and quartz substrates. Another important manufacturing result is the successful elaboration of a binding protocol of anisotropic conduction adhesives. These have been employed in high density interconnections between ITO-glass and flexible printed circuits. Regarding material characterization, the comparative study of nonstoichiometric silicon oxide (SiOx) and silica (SiO2) inorganic alignment layers, as well as the relationship between surface layer deposition, layer morphology and liquid crystal electrooptical response must be highlighted, together with the characterization of the degradation of liquid crystal devices in simulated space mission environment. A wide variety of phase devices have been developed, with special emphasis on beam steerers. One of these was developed within the framework of an ESA project, and consisted of a high density reconfigurable 1D blaze grating, with a spatial separation of the controlling microelectronics and the active, radiation exposed, area. The developed devices confirmed the assumption that liquid crystal devices with such a separation of components, are radiation hard, and can be designed to be both vibration and temperature sturdy. In parallel to the above, an evenly variable analog beam steering device was designed, manufactured and characterized, providing a narrow cone diffraction free beam steering. This steering device is characterized by a very limited number of electrodes necessary for the redirection of a light beam. As few as 4 different voltage levels were needed in order to redirect a light beam. Finally at the Wojskowa Akademia Techniczna (Military University of Technology) in Warsaw, Poland, a wedged analog tunable beam steering device was designed, manufactured and characterized. This beam steerer, like the former one, was designed to resist the harsh conditions both in space and in the context of the shuttle launch. Apart from the beam steering devices, reconfigurable vortices and modal lens devices have been manufactured and characterized. In summary, during this work a large number of liquid crystal devices and liquid crystal device manufacturing technologies have been developed. Besides their relevance in scientific publications and technical achievements, most of these new devices have demonstrated their usefulness in the actual work of the research group where this PhD has been completed. El presente trabajo de Tesis se ha centrado en el diseño, fabricación y caracterización de nuevos dispositivos de fase basados en cristal líquido. Actualmente se están desarrollando dispositivos basados en cristal líquido para aplicaciones diferentes a su uso habitual como displays. Poseen la ventaja de que los dispositivos pueden ser controlados por bajas tensiones y no necesitan elementos mecánicos para su funcionamiento. La fabricación de todos los dispositivos del presente trabajo se ha realizado en la cámara limpia del grupo. La cámara limpia ha sido diseñada por el grupo de investigación, es de dimensiones reducidas pero muy versátil. Está dividida en distintas áreas de trabajo dependiendo del tipo de proceso que se lleva a cabo. La cámara limpia está completamente cubierta de un material libre de polvo. Todas las entradas de suministro de gas y agua están selladas. El aire filtrado es constantemente bombeado dentro de la zona limpia, a fin de crear una sobrepresión evitando así la entrada de aire sin filtrar. Las personas que trabajan en esta zona siempre deben de estar protegidas con un traje especial. Se utilizan trajes especiales que constan de: mono, máscara, guantes de látex, gorro, patucos y gafas de protección UV, cuando sea necesario. Para introducir material dentro de la cámara limpia se debe limpiar con alcohol y paños especiales y posteriormente secarlos con nitrógeno a presión. La fabricación debe seguir estrictamente unos pasos determinados, que pueden cambiar dependiendo de los requerimientos de cada dispositivo. Por ello, la fabricación de dispositivos requiere la formulación de varios protocolos de fabricación. Estos protocolos deben ser estrictamente respetados a fin de obtener repetitividad en los experimentos, lo que lleva siempre asociado un proceso de fabricación fiable. Una célula de cristal líquido está compuesta (de forma general) por dos vidrios ensamblados (sándwich) y colocados a una distancia determinada. Los vidrios se han sometido a una serie de procesos para acondicionar las superficies internas. La célula se llena con cristal líquido. De forma resumida, el proceso de fabricación general es el siguiente: inicialmente, se cortan los vidrios (cuya cara interna es conductora) y se limpian. Después se imprimen las pistas sobre el vidrio formando los píxeles. Estas pistas conductoras provienen del vidrio con la capa conductora de ITO (óxido de indio y estaño). Esto se hace a través de un proceso de fotolitografía con una resina fotosensible, y un desarrollo y ataque posterior del ITO sin protección. Más tarde, las caras internas de los vidrios se acondicionan depositando una capa, que puede ser orgánica o inorgánica (un polímero o un óxido). Esta etapa es crucial para el funcionamiento del dispositivo: induce la orientación de las moléculas de cristal líquido. Una vez que las superficies están acondicionadas, se depositan espaciadores en las mismas: son pequeñas esferas o cilindros de tamaño calibrado (pocos micrómetros) para garantizar un espesor homogéneo del dispositivo. Después en uno de los sustratos se deposita un adhesivo (gasket). A continuación, los sustratos se ensamblan teniendo en cuenta que el gasket debe dejar una boca libre para que el cristal líquido se introduzca posteriormente dentro de la célula. El llenado de la célula se realiza en una cámara de vacío y después la boca se sella. Por último, la conexión de los cables a la célula y el montaje de los polarizadores se realizan fuera de la sala limpia (Figura 1). Dependiendo de la aplicación, el cristal líquido empleado y los demás componentes de la célula tendrán unas características particulares. Para el diseño de los dispositivos de este trabajo se ha realizado un estudio de superficies inorgánicas de alineamiento del cristal líquido, que será de gran importancia para la preparación de los dispositivos de fase, dependiendo de las condiciones ambientales en las que vayan a trabajar. Los materiales inorgánicos que se han estudiado han sido en este caso SiOx y SiO2. El estudio ha comprendido tanto los factores de preparación influyentes en el alineamiento, el comportamiento del cristal líquido al variar estos factores y un estudio de la morfología de las superficies obtenidas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Visually impaired people have many difficulties when traveling because it is impossible for them to detect obstacles that stand in their way. Bats instead of using the sight to detect these obstacles use a method based on ultrasounds, as their sense of hearing is much more developed than that of sight. The aim of the project is to design and build a device based on the method used by the bats to detect obstacles and transmit this information to people with vision problems to improve their skills. The method involves sending ultrasonic waves and analyzing the echoes produced when these waves collide with an obstacle. The sent signals are pulses and the information needed is the time elapsed from we send a pulse to receive the echo produced. The speed of sound is fixed within the same environment, so measuring the time it takes the wave to make the return trip, we can easily know the distance where the object is located. To build the device we have to design the necessary circuits, fabricate printed circuit boards and mount the components. We also have to design a program that would work within the digital part, which will be responsible for performing distance calculations and generate the signals with the information for the user. The circuits are the emitter and the receiver. The transmitter circuit is responsible for generating the signals that we will use. We use an ultrasonic transmitter which operates at 40 kHz so the sent pulses have to be modulated with this frequency. For this we generate a 40 kHz wave with an astable multivibrator formed by NAND gates and a train of pulses with a timer. The signal is the product of these two signals. The circuit of the receiver is a signal conditioner which transforms the signals received by the ultrasonic receiver in square pulses. The received signals have a 40 kHz carrier, low voltage and very different shapes. In the signal conditioner we will amplify the voltage to appropriate levels, eliminate the component of 40 kHz and make the shape of the pulses square to use them digitally. To simplify the design and manufacturing process in the digital part of the device we will use the Arduino platform. The pulses sent and received echoes enter through input pins with suitable voltage levels. In the Arduino, our program will poll these two signals storing the time when a pulse occurs. These time values are analyzed and used to generate an audible signal with the user information. This information is stored in the frequency of the signal, so that the generated signal frequency varies depending on the distance at which the objects are. RESUMEN Las personas con discapacidad visual tienen muchas dificultades a la hora de desplazarse ya que les es imposible poder detectar los obstáculos que se interpongan en su camino. Los murciélagos en vez de usar la vista para detectar estos obstáculos utilizan un método basado en ultrasonidos, ya que su sentido del oído está mucho más desarrollado que el de la vista. El objetivo del proyecto es diseñar y construir un dispositivo basado en el método usado por los murciélagos para detectar obstáculos y que pueda ser usado por las personas con problemas en la vista para mejorar sus capacidades. El método utilizado consiste en enviar ondas de ultrasonidos y analizar el eco producido cuando estas ondas chocan con algún obstáculo. Las señales enviadas tendrán forma de pulsos y la información necesaria es el tiempo transcurrido entre que enviamos un pulso y recibimos el eco producido. La velocidad del sonido es fija dentro de un mismo entorno, por lo que midiendo el tiempo que tarda la onda en hacer el viaje de ida y vuelta podemos fácilmente conocer la distancia a la que se encuentra el objeto. Para construir el dispositivo tendremos que diseñar los circuitos necesarios, fabricar las placas de circuito impreso y montar los componentes. También deberemos diseñar el programa que funcionara dentro de la parte digital, que será el encargado de realizar los cálculos de la distancia y de generar las señales con la información para el usuario. Los circuitos diseñados corresponden uno al emisor y otro al receptor. El circuito emisor es el encargado de generar las señales que vamos a emitir. Vamos a usar un emisor de ultrasonidos que funciona a 40 kHz por lo que los pulsos que enviemos van a tener que estar modulados con esta frecuencia. Para ello generamos una onda de 40 kHz mediante un multivibrador aestable formado por puertas NAND y un tren de pulsos con un timer. La señal enviada es el producto de estas dos señales. El circuito de la parte del receptor es un acondicionador de señal que transforma las señales recibidas por el receptor de ultrasonidos en pulsos cuadrados. Las señales recibidas tienen una portadora de 40 kHz para poder usarlas con el receptor de ultrasonidos, bajo voltaje y formas muy diversas. En el acondicionador de señal amplificaremos el voltaje a niveles adecuados además de eliminar la componente de 40 kHz y conseguir pulsos cuadrados que podamos usar de forma digital. Para simplificar el proceso de diseño y fabricación en la parte digital del dispositivo usaremos la plataforma Arduino. Las señales correspondientes el envío de los pulsos y a la recepción de los ecos entraran por pines de entrada después de haber adaptado los niveles de voltaje. En el Arduino, nuestro programa sondeara estas dos señales almacenando el tiempo en el que se produce un pulso. Estos valores de tiempo se analizan y se usan para generar una señal audible con la información para el usuario. Esta información ira almacenada en la frecuencia de la señal, por lo que la señal generada variará su frecuencia en función de la distancia a la que se encuentren los objetos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El requerimiento de proveer alta frecuencia de datos en los modernos sistema de comunicación inalámbricos resulta en complejas señales moduladas de radio-frequencia (RF) con un gran ancho de banda y alto ratio pico-promedio (PAPR). Para garantizar la linealidad del comportamiento, los amplificadores lineales de potencia comunes funcionan típicamente entre 4 y 10 dB de back-o_ desde la máxima potencia de salida, ocasionando una baja eficiencia del sistema. La eliminación y restauración de la evolvente (EER) y el seguimiento de la evolvente (ET) son dos prometedoras técnicas para resolver el problema de la eficiencia. Tanto en EER como en ET, es complicado diseñar un amplificador de potencia que sea eficiente para señales de RF de alto ancho de banda y alto PAPR. Una propuesta común para los amplificadores de potencia es incluir un convertidor de potencia de muy alta eficiencia operando a frecuencias más altas que el ancho de banda de la señal RF. En este caso, la potencia perdida del convertidor ocasionado por la alta frecuencia desaconseja su práctica cuando el ancho de banda es muy alto. La solución a este problema es el enfoque de esta disertación que presenta dos arquitecturas de amplificador evolvente: convertidor híbrido-serie con una técnica de evolvente lenta y un convertidor multinivel basado en un convertidor reductor multifase con control de tiempo mínimo. En la primera arquitectura, una topología híbrida está compuesta de una convertidor reductor conmutado y un regulador lineal en serie que trabajan juntos para ajustar la tensión de salida para seguir a la evolvente con precisión. Un algoritmo de generación de una evolvente lenta crea una forma de onda con una pendiente limitada que es menor que la pendiente máxima de la evolvente original. La salida del convertidor reductor sigue esa forma de onda en vez de la evolvente original usando una menor frecuencia de conmutación, porque la forma de onda no sólo tiene una pendiente reducida sino también un menor ancho de banda. De esta forma, el regulador lineal se usa para filtrar la forma de onda tiene una pérdida de potencia adicional. Dependiendo de cuánto se puede reducir la pendiente de la evolvente para producir la forma de onda, existe un trade-off entre la pérdida de potencia del convertidor reductor relacionada con la frecuencia de conmutación y el regulador lineal. El punto óptimo referido a la menor pérdida de potencia total del amplificador de evolvente es capaz de identificarse con la ayuda de modelo preciso de pérdidas que es una combinación de modelos comportamentales y analíticos de pérdidas. Además, se analiza el efecto en la respuesta del filtro de salida del convertidor reductor. Un filtro de dampeo paralelo extra es necesario para eliminar la oscilación resonante del filtro de salida porque el convertidor reductor opera en lazo abierto. La segunda arquitectura es un amplificador de evolvente de seguimiento de tensión multinivel. Al contrario que los convertidores que usan multi-fuentes, un convertidor reductor multifase se emplea para generar la tensión multinivel. En régimen permanente, el convertidor reductor opera en puntos del ciclo de trabajo con cancelación completa del rizado. El número de niveles de tensión es igual al número de fases de acuerdo a las características del entrelazamiento del convertidor reductor. En la transición, un control de tiempo mínimo (MTC) para convertidores multifase es novedosamente propuesto y desarrollado para cambiar la tensión de salida del convertidor reductor entre diferentes niveles. A diferencia de controles convencionales de tiempo mínimo para convertidores multifase con inductancia equivalente, el propuesto MTC considera el rizado de corriente por cada fase basado en un desfase fijo que resulta en diferentes esquemas de control entre las fases. La ventaja de este control es que todas las corrientes vuelven a su fase en régimen permanente después de la transición para que la siguiente transición pueda empezar muy pronto, lo que es muy favorable para la aplicación de seguimiento de tensión multinivel. Además, el control es independiente de la carga y no es afectado por corrientes de fase desbalanceadas. Al igual que en la primera arquitectura, hay una etapa lineal con la misma función, conectada en serie con el convertidor reductor multifase. Dado que tanto el régimen permanente como el estado de transición del convertidor no están fuertemente relacionados con la frecuencia de conmutación, la frecuencia de conmutación puede ser reducida para el alto ancho de banda de la evolvente, la cual es la principal consideración de esta arquitectura. La optimización de la segunda arquitectura para más alto anchos de banda de la evolvente es presentada incluyendo el diseño del filtro de salida, la frecuencia de conmutación y el número de fases. El área de diseño del filtro está restringido por la transición rápida y el mínimo pulso del hardware. La rápida transición necesita un filtro pequeño pero la limitación del pulso mínimo del hardware lleva el diseño en el sentido contrario. La frecuencia de conmutación del convertidor afecta principalmente a la limitación del mínimo pulso y a las pérdidas de potencia. Con una menor frecuencia de conmutación, el ancho de pulso en la transición es más pequeño. El número de fases relativo a la aplicación específica puede ser optimizado en términos de la eficiencia global. Otro aspecto de la optimización es mejorar la estrategia de control. La transición permite seguir algunas partes de la evolvente que son más rápidas de lo que el hardware puede soportar al precio de complejidad. El nuevo método de sincronización de la transición incrementa la frecuencia de la transición, permitiendo que la tensión multinivel esté más cerca de la evolvente. Ambas estrategias permiten que el convertidor pueda seguir una evolvente con un ancho de banda más alto que la limitación de la etapa de potencia. El modelo de pérdidas del amplificador de evolvente se ha detallado y validado mediante medidas. El mecanismo de pérdidas de potencia del convertidor reductor tiene que incluir las transiciones en tiempo real, lo cual es diferente del clásico modelos de pérdidas de un convertidor reductor síncrono. Este modelo estima la eficiencia del sistema y juega un papel muy importante en el proceso de optimización. Finalmente, la segunda arquitectura del amplificador de evolvente se integra con el amplificador de clase F. La medida del sistema EER prueba el ahorro de energía con el amplificador de evolvente propuesto sin perjudicar la linealidad del sistema. ABSTRACT The requirement of delivering high data rates in modern wireless communication systems results in complex modulated RF signals with wide bandwidth and high peak-to-average ratio (PAPR). In order to guarantee the linearity performance, the conventional linear power amplifiers typically work at 4 to 10 dB back-off from the maximum output power, leading to low system efficiency. The envelope elimination and restoration (EER) and envelope tracking (ET) are two promising techniques to overcome the efficiency problem. In both EER and ET, it is challenging to design efficient envelope amplifier for wide bandwidth and high PAPR RF signals. An usual approach for envelope amplifier includes a high-efficiency switching power converter operating at a frequency higher than the RF signal's bandwidth. In this case, the power loss of converter caused by high switching operation becomes unbearable for system efficiency when signal bandwidth is very wide. The solution of this problem is the focus of this dissertation that presents two architectures of envelope amplifier: a hybrid series converter with slow-envelope technique and a multilevel converter based on a multiphase buck converter with the minimum time control. In the first architecture, a hybrid topology is composed of a switched buck converter and a linear regulator in series that work together to adjust the output voltage to track the envelope with accuracy. A slow envelope generation algorithm yields a waveform with limited slew rate that is lower than the maximum slew rate of the original envelope. The buck converter's output follows this waveform instead of the original envelope using lower switching frequency, because the waveform has not only reduced slew rate but also reduced bandwidth. In this way, the linear regulator used to filter the waveform has additional power loss. Depending on how much reduction of the slew rate of envelope in order to obtain that waveform, there is a trade-off between the power loss of buck converter related to the switching frequency and the power loss of linear regulator. The optimal point referring to the lowest total power loss of this envelope amplifier is identified with the help of a precise power loss model that is a combination of behavioral and analytic loss model. In addition, the output filter's effect on the response is analyzed. An extra parallel damping filter is needed to eliminate the resonant oscillation of output filter L and C, because the buck converter operates in open loop. The second architecture is a multilevel voltage tracking envelope amplifier. Unlike the converters using multi-sources, a multiphase buck converter is employed to generate the multilevel voltage. In the steady state, the buck converter operates at complete ripple cancellation points of duty cycle. The number of the voltage levels is equal to the number of phases according the characteristics of interleaved buck converter. In the transition, a minimum time control (MTC) for multiphase converter is originally proposed and developed for changing the output voltage of buck converter between different levels. As opposed to conventional minimum time control for multiphase converter with equivalent inductance, the proposed MTC considers the current ripple of each phase based on the fixed phase shift resulting in different control schemes among the phases. The advantage of this control is that all the phase current return to the steady state after the transition so that the next transition can be triggered very soon, which is very favorable for the application of multilevel voltage tracking. Besides, the control is independent on the load condition and not affected by the unbalance of phase current. Like the first architecture, there is also a linear stage with the same function, connected in series with the multiphase buck converter. Since both steady state and transition state of the converter are not strongly related to the switching frequency, it can be reduced for wide bandwidth envelope which is the main consideration of this architecture. The optimization of the second architecture for wider bandwidth envelope is presented including the output filter design, switching frequency and the number of phases. The filter design area is restrained by fast transition and the minimum pulse of hardware. The fast transition needs small filter but the minimum pulse of hardware limitation pushes the filter in opposite way. The converter switching frequency mainly affects the minimum pulse limitation and the power loss. With lower switching frequency, the pulse width in the transition is smaller. The number of phases related to specific application can be optimized in terms of overall efficiency. Another aspect of optimization is improving control strategy. Transition shift allows tracking some parts of envelope that are faster than the hardware can support at the price of complexity. The new transition synchronization method increases the frequency of transition, allowing the multilevel voltage to be closer to the envelope. Both control strategies push the converter to track wider bandwidth envelope than the limitation of power stage. The power loss model of envelope amplifier is detailed and validated by measurements. The power loss mechanism of buck converter has to include the transitions in real time operation, which is different from classical power loss model of synchronous buck converter. This model estimates the system efficiency and play a very important role in optimization process. Finally, the second envelope amplifier architecture is integrated with a Class F amplifier. EER system measurement proves the power saving with the proposed envelope amplifier without disrupting the linearity performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intermediate band solar cell (IBSC) is based on a novel photovoltaic concept and has a limiting efficiency of 63.2%, which compares favorably with the 40.7% efficiency of a conventional, single junction solar cell. It is characterized by a material hosting a collection of energy levels within its bandgap, allowing the cell to exploit photons with sub-bandgap energies in a two-step absorption process, thus improving the utilization of the solar spectrum. However, these intermediate levels are often regarded as an inherent source of supplementary recombination, although this harmful effect can in theory be counteracted by the use of concentrated light. We present here a novel, low-temperature characterization technique using concentrated light that reveals how the initially enhanced recombination in the IBSC is reduced so that its open-circuit voltage is completely recovered and reaches that of a conventional solar cell.