7 resultados para Void Nucleation
em Universidad Politécnica de Madrid
Resumo:
The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.
Resumo:
This work summarizes the observations made on the variation and time evolution of the reflectanceanisotropy signal during the MOVPE growth of GaInPnucleation layers on Germanium substrates. This in situ monitoring tool is used to assess the impact of different nucleation routines and reactor conditions on the quality of the layers grown. This comparison is carried out by establishing a correlation between reflectanceanisotropy signature at 2.1 eV and the morphology of the epilayers evaluated by atomic force microscopy (AFM). This paper outlines the potential of reflectanceanisotropy to predict, explore, and therefore optimize, the best growth conditions that lead to a high quality III–V epilayer on a Ge substrate
Resumo:
•Self- assembled Ga(In)N Nanorods and Nanostructures •Ordered growth of GaN Nanorods: masks issues •Ordered growth of GaN Nanorods: mechanisms •White NanoLEDs
Resumo:
A strategy is presented to optimize out-of-autoclave processing of quasi-isotropic carbon fiber-reinforced laminates. Square panels of 4.6 mm nominal thickness with very low porosity ð6 0:2%Þ were manufactured by compression molding at low pressure (0.2 MPa) by careful design of the temperature cycle to maximize the processing window. The mechanisms of void migration during processing were ascertained by means of X-ray microtomography and the effect of ply clustering on porosity and on void shape was explained. Finally, the effect of porosity and ply clustering on the compressive strength before and after impact was studied.
Resumo:
Void growth in ductile materials is an important problem from the fundamental and technological viewpoint. Most of the models developed to quantify and understand the void growth process did not take into account two important factors: the anisotropic nature of plastic flow in single crystals and the size effects that appear when plastic flow is confined into very small regions.
Resumo:
The study of granular systems is of great interest to many fields of science and technology. The packing of particles affects to the physical properties of the granular system. In particular, the crucial influence of particle size distribution (PSD) on the random packing structure increase the interest in relating both, either theoretically or by computational methods. A packing computational method is developed in order to estimate the void fraction corresponding to a fractal-like particle size distribution.
Resumo:
The study of granular systems is of great interest to many fields of science and technology. The packing of particles affects to the physical properties of the granular system. In particular, the crucial influence of particle size distribution (PSD) on the random packing structure increase the interest in relating both, either theoretically or by computational methods. A packing computational method is developed in order to estimate the void fraction corresponding to a fractal-like particle size distribution.