4 resultados para Vocabulario controlado
em Universidad Politécnica de Madrid
Resumo:
El objetivo del presente proyecto es proporcionar una actividad de la pronunciación y repaso de vocabulario en lengua inglesa para la plataforma Moodle alojada en la página web de Integrated Language Learning Lab (ILLLab). La página web ILLLab tiene el objetivo de que los alumnos de la EUIT de Telecomunicación de la UPM con un nivel de inglés A2 según el Marco Común Europeo de Referencia para las Lenguas (MCERL), puedan trabajar de manera autónoma para avanzar hacia el nivel B2 en inglés. La UPM exige estos conocimientos de nivel de inglés para cursar la asignatura English for Professional and Academic Communication (EPAC) de carácter obligatorio e impartida en el séptimo semestre del Grado en Ingeniería de Telecomunicaciones. Asimismo, se persigue abordar el problema de las escasas actividades de expresión oral de las plataformas de autoaprendizaje se dedican a la formación en idiomas y, más concretamente, al inglés. Con ese fin, se proporciona una herramienta basada en sistemas de reconocimiento de voz para que el usuario practique la pronunciación de las palabras inglesas. En el primer capítulo del trabajo se introduce la aplicación Traffic Lights, explicando sus orígenes y en qué consiste. En el segundo capítulo se abordan aspectos teóricos relacionados con el reconocimiento de voz y se comenta sus funciones principales y las aplicaciones actuales para las que se usa. El tercer capítulo ofrece una explicación detallada de los diferentes lenguajes utilizados para la realización del proyecto, así como de su código desarrollado. En el cuarto capítulo se plantea un manual de usuario de la aplicación, exponiendo al usuario cómo funciona la aplicación y un ejemplo de uso. Además, se añade varias secciones para el administrador de la aplicación, en las que se especifica cómo agregar nuevas palabras en la base de datos y hacer cambios en el tiempo estimado que el usuario tiene para acabar una partida del juego. ABSTRACT: The objective of the present project is to provide an activity of pronunciation and vocabulary review in English language within the platform Moodle hosted at the Integrated Language Learning Lab (ILLLab) website. The ILLLab website has the aim to provide students at the EUIT of Telecommunication in the UPM with activities to develop their A2 level according to the Common European Framework of Reference for Languages (CEFR). In the platform, students can work independently to advance towards a B2 level in English. The UPM requires this level of English proficiency for enrolling in the compulsory subject English for Professional and Academic Communication (EPAC) taught in the seventh semester of the Degree in Telecommunications Engineering. Likewise, this project tries to provide alternatives to solve the problem of scarce speaking activities included in the learning platforms that offer language courses, and specifically, English language courses. For this purpose, it provides a tool based on speech recognition systems so that the user can practice the pronunciation of English words. The first chapter of the project introduces the application Traffic Lights, explaining its origins and what it is. The second chapter deals with theoretical aspects related with speech recognition and comments their main features and current applications for which it is generally used. The third chapter provides a detailed explanation of the different programming languages used for the implementation of the project and reviews its code development. The fourth chapter presents an application user manual, exposing to the user how the application works and an example of use. Also, several sections are added addressed to the application administrator, which specify how to add new words to the database and how to make changes in the original stings as could be the estimated time that the user has to finish the game.
Resumo:
En este TFG se propone un nuevo procedimiento para accionar un efecto de sonido wah-wah basado en el uso de un acelerómetro que detecta el movimiento del pie del músico, sin necesidad de accionar directamente una plataforma. El efecto de sonido estaría formado por el acelerómetro, un circuito de detección de la señal del acelerómetro y generación de una señal de control que actúa sobre un filtro controlado por tensión (VCF) y el propio VCF, cuya frecuencia de corte depende de la señal de control. En este TFG se ha realizado un diseño original del circuito de detección y generación. Se detalla el circuito diseñado, se describe su funcionamiento, la construcción de un prototipo y las pruebas realizadas.
Resumo:
El presente proyecto sienta las bases para el desarrollo de un helicóptero coaxial autónomo. Como principales novedades, se quiere destacar el manejo y control de este. El manejo del helicóptero se consigue desplazando el centro de gravedad. Por otro lado, el control se realiza mediante los sensores de un Smartphone a bordo de la aeronave. Este teléfono además, proporcionará una amplia gama de recursos para el desarrollo de futuras aplicaciones, como pueden ser la cámara o GPS. También se desarrolla la aplicación para enviar órdenes desde el exterior para maniobrar el helicóptero. Este trabajo se lleva a cabo conjuntamente con mi compañero Eduardo Ortega Biber (1), quién se enfoca en las tareas de diseño y simulación. Mientras que el actual proyecto, se centra en el desarrollo de las dos aplicaciones Android de los teléfonos.
Resumo:
El presente PFC tiene como objetivo el desarrollo de un gestor domótico basado en el dictado de voz de la red social WhatsApp. Dicho gestor no solo sustituirá el concepto dañino de que la integración de la domótica hoy en día es cara e inservible sino que acercará a aquellas personas con una discapacidad a tener una mejora en la calidad de vida. Estas personas, con un simple comando de voz a su aplicación WhatsApp de su terminal móvil, podrán activar o desactivar todos los elementos domóticos que su vivienda tenga instalados, “activar lámpara”, “encender Horno”, “abrir Puerta”… Todo a un muy bajo precio y utilizando tecnologías OpenSource El objetivo principal de este PFC es ayudar a la gente con una discapacidad a tener mejor calidad de vida, haciéndose independiente en las labores del hogar, ya que será el hogar quien haga las labores. La accesibilidad de este servicio, es por tanto, la mayor de las metas. Para conseguir accesibilidad para todas las personas, se necesita un servicio barato y de fácil aprendizaje. Se elige la red social WhatsApp como interprete, ya que no necesita de formación al ser una aplicación usada mayoritariamente en España y por la capacidad del dictado de voz, y se eligen las tecnologías OpenSource por ser la gran mayoría de ellas gratuitas o de pago solo el hardware. La utilización de la Red social WhatsApp se justifica por sí sola, en septiembre de 2015 se registraron 900 millones de usuarios. Este dato es fruto, también, de la reciente adquisición por parte de Facebook y hace que cumpla el primer requisito de accesibilidad para el servicio domotico que se presenta. Desde hace casi 5 años existe una API liberada de WhatsApp, que la comunidad OpenSource ha utilizado, para crear sus propios clientes o aplicaciones de envío de mensajes, usando la infraestructura de la red social. La empresa no lo aprueba abiertamente, pero la liberación de la API fue legal y su uso también lo es. Por otra parte la empresa se reserva el derecho de bloquear cuentas por el uso fraudulento de su infraestructura. Las tecnologías OpenSource utilizadas han sido, distribuciones Linux (Raspbian) y lenguajes de programación PHP, Python y BASHSCRIPT, todo cubierto por la comunidad, ofreciendo soporte y escalabilidad. Es por ello que se utiliza, como matriz y gestor domotico central, una RaspberryPI. Los servicios que el gestor ofrece en su primera versión incluyen el control domotico de la iluminación eléctrica general o personal, el control de todo tipo de electrodomésticos, el control de accesos para la puerta principal de entrada y el control de medios audiovisuales. ABSTRACT. This final thesis aims to develop a domotic manager based on the speech recognition capacity implemented in the social network, WhatsApp. This Manager not only banish the wrong idea about how expensive and useless is a domotic installation, this manager will give an opportunity to handicapped people to improve their quality of life. These people, with a simple voice command to their own WhatsApp, could enable or disable all the domotics devices installed in their living places. “On Lamp”, “ON Oven”, “Open Door”… This service reduce considerably the budgets because the use of OpenSource Technologies. The main achievement of this thesis is help handicapped people improving their quality of life, making independent from the housework. The house will do the work. The accessibility is, by the way, the goal to achieve. To get accessibility to a width range, we need a cheap, easy to learn and easy to use service. The social Network WhatsApp is one part of the answer, this app does not need explanation because is used all over the world, moreover, integrates the speech recognition capacity. The OpenSource technologies is the other part of the answer due to the low costs or, even, the free costs of their implementations. The use of the social network WhatsApp is explained by itself. In September 2015 were registered around 900 million users, of course, the recent acquisition by Facebook has helped in this astronomic number and match the first law of this service about the accessibility. Since five years exists, in the internet, a free WhatsApp API. The OpenSource community has used this API to develop their own messaging apps or desktop-clients, using the WhatsApp infrastructure. The company does not approve officially, however le API freedom is legal and the use of the API is legal too. On the other hand, the company can block accounts who makes a fraudulent use of his infrastructure. OpenSource technologies used in this thesis are: Linux distributions (Raspbian) and programming languages PHP, Python and BASHCSRIPT, all of these technologies are covered by the community offering support and scalability. Due to that, it is used a RaspberryPI as the Central Domotic Manager. The domotic services that currently this manager achieve are: Domotic lighting control, electronic devices control, access control to the main door and Media Control.