12 resultados para Visible lights
em Universidad Politécnica de Madrid
Resumo:
Ozone (O3) phytototoxicity has been reported on a wide range of plantspecies, inducing the appearance of specific foliar injury or increasing leaf senescence. No information regarding the sensitivity of plantspecies from dehesa Mediterranean grasslands has been provided in spite of their great biological diversity. A screening study was carried out in open-top chambers (OTCs) to assess the O3-sensitivity of 22 representative therophytes of these ecosystems based on the appearance and extent of foliar injury. A distinction was made between specific O3injury and non-specific discolorations. Three O3 treatments (charcoal-filtered air, non-filtered air and non-filtered air supplemented with 40 nl l−1 O3 during 5 days per week) and three OTCs per treatment were used. The Papilionaceae species were more sensitive to O3 than the Poaceae species involved in the experiment since ambient levels induced foliar symptoms in 67% and 27%, respectively, of both plant families. An O3-sensitivity ranking of the species involved in the assessment is provided, which could be useful for bioindication programmes in Mediterranean areas. The assessed Trifoliumspecies were particularly sensitive since foliar symptoms were apparent in association with O3 accumulated exposures well below the current critical level for the prevention of this kind of effect. The exposure indices involving lower cut-off values (i.e. 30 nl l−1) were best related with the extent of O3-induced injury on these species.
Resumo:
Se evalúa con indicadores de gobernanza urbana la sostenibilidad de las formas de hacer ciudad hibrida compleja del gobierno de la gestión visible (GGV). Argumenta que el GGV hace ciudad para legitimarse por desempeño y fortalecer la gobernanza local, en un contexto de mutaciones múltiples y radicales que tienden a diluir y centralizar el poder local y fractalizar la ciudad, profundizando la segregación sociopolítica-territorial y la ingobernabilidad genética de la ciudad hibrida, poniendo en riesgo el Estado federal descentralizado, el derecho a la ciudad, al gobierno local y la gobernanza urbana y multinivel (hipótesis). La estrategia de evaluación de gobernanza innovadora (EEG+i) diseñada para evaluar la relación entre las formas de hacer ciudad hibrida (variables espaciales) y gobernanza (variable a-espacial) es transversal, multidimensional y se construye desde la complejidad, el análisis de escenarios, formulación de constructos, modelos e indicadores de gobernanza, entretejiendo tres campos de conocimiento, gobierno, ciudad y sostenibilidad, en cuatro fases. La Fase 1, contextualiza la gobernanza en la dramática del siglo XXI. La Fase 2, desarrolla la fundamentación teórico-práctica, nuevos conceptos y un abordaje analítico propio ‘genética territorial’, para analizar y comprehender la complejidad de la ciudad hibrida de países en desarrollo, tejiendo ontogenética territorial y el carácter autopoiético del gen informal. En la Fase 3, se caracterizan las formas de hacer ciudad desde la genética del territorio, se formulan modelos e indicadores de gobernanza con los que se evalúan, aplicando un delphi y cuestionarios, los genes tipológicos-formas de hacer ciudad y validan las conclusiones. En la Fase 4, se correlacionan los resultados de los instrumentos aplicados con la praxis urbana del GGV, durante cuatro periodos de gobierno (1996-2010). Concluyendo que, la estrategia de evaluación comprobó las hipótesis y demostró la correlación transversal y multinivel existente entre, las mutaciones en curso que contradicen el modelo de gobernanza constitucional, el paisaje de gobernanza latinoamericano y venezolano, la praxis de los regímenes híbridos ricos en recursos naturales, las perspectivas de desarrollo globales y se expresa sociopolíticamente en déficit de gobernanza, Estado de derecho y cohesión-capital social y, espaciolocalmente, en la ciudad hibrida dispersa y diluida (compleja) y en el gobierno del poder diluido centralizado. La confrontación de flujos de poder centrípetos y centrífugos en la ciudad profundiza la fragmentación socioespacial y política y el deterioro de la calidad de vida, incrementando las protestas ciudadanas e ingobernabilidad que obstaculiza la superación de la pobreza y gobernanza urbana y multinivel. La evaluación de la praxis urbana del GGV evidenció que la correlación entre gobernanza, la producción de genes formales y la ciudad por iniciativa privada tiende a ser positiva y entre gobernanza, genes y producción de ciudad informal negativa, por el carácter autopoiético-autogobernable del gen informal y de los nuevos gobiernos sublocales que dificulta gobernar en gobernanza. La praxis del GGV es contraria al modelo de gobernanza formulado y la disolución centralizada del gobierno local y de la ciudad hibrida-dispersa es socio-espacial y políticamente insostenible. Se proponen estrategias y tácticas de gobernanza multinivel para recuperar la cohesión social y de planificación de la gestión innovadora (EG [PG] +i) para orquestar, desde el Consejo Local de Gobernanza (CLG) y con la participación de los espacios y gobiernos sublocales, un proyecto de ciudad compartido y sostenible. ABSTRACT The sustainability of the forms of making the hybrid-complex city by the visible management government (VMG) is evaluated using urban governance indicators. Argues that the VMG builds city to legitimate itself by performance and to strengthen local governance in a context of multiple and radical mutations that tend to dilute and centralize local power and fractalize the city, deepening the socio-spatial and political segregation, the genetic ingovernability of the hybrid city and placing the decentralized federal State, the right to city, local government and urban governance at risk (hypothesis). The innovative governance evaluation strategy (GES+i) designed to assess the relationship between the forms of making the hybrid city (spatial variables) and governance (a-spatial variable) is transversal, multidimensional; is constructed from complexity, scenario analysis, the formulation of concepts, models and governance indicators, weaving three fields of knowledge, government, city and sustainability in four phases. Phase 1, contextualizes governance in the dramatic of the twenty-first century. Phase 2, develops the theoretical and practical foundations, new concepts and a proper analytical approach to comprehend the complexity of the hybrid city from developing countries, weaving territorial ontogenetic with the autopiethic character of the informal city gen. In Phase 3, the ways of making city are characterized from the genetics of territory; governance indicators and models are formulated to evaluate, using delphi and questionnaires, the ways of making city and validate the conclusions. In Phase 4, the results of the instruments applied are correlated with the urban praxis of the VMG during the four periods of government analyzed (1996-2010). Concluding that, the evaluation strategy proved the hypothesis and showed the transversal and multilevel correlation between, mutations that contradict the constitutional governance model, the governance landscape of Latinamerica and the country, the praxis of the hybrid regimes rich in natural resources, the perspectives of the glocal economy and expresses socio-politically the governance and rule of law and social capital-cohesion deficit and spatial-temporarily the hybrid disperse and diluted city (complex) and the diluted-centralized local government. The confrontation of flows of power centripetal and centrifugal in the city deepens the socio-spatial and political fragmentation and deterioration of the quality of life, increasing citizens' protests and ingovernability which hinders poverty eradication and, multilevel and urban governance. The evaluation of the VMG urban praxis showed the correlation between governance, the production of formal genes and city by private initiative tended to be positive and, between informal genes-city production and governance negative, due to its autopiethic-self governable character that hinders governance. The urban praxis of the VMG contradicts the formulated governance model and thecentralized dissolution of the local government and hybrid city are socio-spatial and politically unsustainable. Multiscale governance strategies are proposed to recreate social cohesion and a management planning innovative method (EG [PG] + i) to orchestrate, from the Local Governance Council (LGC) and with the participation of sublocal governments and spaces, a shared and sustainable city project.
Resumo:
Los pasados días 4y 5 de junio tuvimos la oportunidad de probar en Lleida el modelo de pulverizador Mercury 3500 de Hardi, equipado con el nuevo sistema Iris-2. El objetivo de la prueba fue caracterizar no solo la máquina y sus especificaciones técnicas, sino la calidad de su trabajo, verificando asimismo el consumo de combustible.
Resumo:
Cuando se usa fotocatálisis, tanto para procesos de descontaminación como para síntesis química específica y (especialmente) para aprovechamiento de energía solar, importa aprovechar un rango muy amplio de luz visible. Para ello se estudian hoy principalmente óxidos (con o sin adición de aniones que disminuyen el gap como el nitrógeno); los sulfuros, como el bien conocido CdS, tienen estabilidad limitada, sobre todo para procesos de fotooxidación en presencia de agua en los que sufren corrosión. Aquí se presentan estudios sobre sulfuros como el In2S3 y el SnS2 (con bandgaps respectivos de 2.0 y 2.2 eV [1]) cuyos metales tienen mayor valencia y coordinación octaédrica, y en los que por ambos factores cabe suponer que su red cristalina, más compacta, tendrá mayor estabilidad. Se muestra también que mediante un dopado importante con vanadio se puede extender su rango espectral de fotoactividad, lo que se atribuye a la formación de una banda intermedia que posibilita el uso de dos fotones con energía inferior al bandgap para conseguir una excitación completa en el semiconductor; este proceso ha sido propuesto últimamente para aumentar el rendimiento de las células fotovoltaicas.
Resumo:
Using photocatalysis for energy applications depends, more than for environmental purposes or selective chemical synthesis, on converting as much of the solar spectrum as possible; the best photocatalyst, titania, is far from this. Many efforts are pursued to use better that spectrum in photocatalysis, by doping titania or using other materials (mainly oxides, nitrides and sulphides) to obtain a lower bandgap, even if this means decreasing the chemical potential of the electron-hole pairs. Here we introduce an alternative scheme, using an idea recently proposed for photovoltaics: the intermediate band (IB) materials. It consists in introducing in the gap of a semiconductor an intermediate level which, acting like a stepstone, allows an electron jumping from the valence band to the conduction band in two steps, each one absorbing one sub-bandgap photon. For this the IB must be partially filled, to allow both sub-bandgap transitions to proceed at comparable rates; must be made of delocalized states to minimize nonradiative recombination; and should not communicate electronically with the outer world. For photovoltaic use the optimum efficiency so achievable, over 1.5 times that given by a normal semiconductor, is obtained with an overall bandgap around 2.0 eV (which would be near-optimal also for water phtosplitting). Note that this scheme differs from the doping principle usually considered in photocatalysis, which just tries to decrease the bandgap; its aim is to keep the full bandgap chemical potential but using also lower energy photons. In the past we have proposed several IB materials based on extensively doping known semiconductors with light transition metals, checking first of all with quantum calculations that the desired IB structure results. Subsequently we have synthesized in powder form two of them: the thiospinel In2S3 and the layered compound SnS2 (having bandgaps of 2.0 and 2.2 eV respectively) where the octahedral cation is substituted at a â?10% level with vanadium, and we have verified that this substitution introduces in the absorption spectrum the sub-bandgap features predicted by the calculations. With these materials we have verified, using a simple reaction (formic acid oxidation), that the photocatalytic spectral response is indeed extended to longer wavelengths, being able to use even 700 nm photons, without largely degrading the response for above-bandgap photons (i.e. strong recombination is not induced) [3b, 4]. These materials are thus promising for efficient photoevolution of hydrogen from water; work on this is being pursued, the results of which will be presented.
Resumo:
Nowadays one of the challenges of materials science is to find new technologies that will be able to make the most of renewable energies. An example of new proposals in this field are the intermediate-band (IB) materials, which promise higher efficiencies in photovoltaic applications (through the intermediate band solar cells), or in heterogeneous photocatalysis (using nanoparticles of them, for the light-induced degradation of pollutants or for the efficient photoevolution of hydrogen from water). An IB material consists in a semiconductor in which gap a new level is introduced [1], the intermediate band (IB), which should be partially filled by electrons and completely separated of the valence band (VB) and of the conduction band (CB). This scheme (figure 1) allows an electron from the VB to be promoted to the IB, and from the latter to the CB, upon absorption of photons with energy below the band gap Eg, so that energy can be absorbed in a wider range of the solar spectrum and a higher current can be obtained without sacrificing the photovoltage (or the chemical driving force) corresponding to the full bandgap Eg, thus increasing the overall efficiency. This concept, applied to photocatalysis, would allow using photons of a wider visible range while keeping the same redox capacity. It is important to note that this concept differs from the classic photocatalyst doping principle, which essentially tries just to decrease the bandgap. This new type of materials would keep the full bandgap potential but would use also lower energy photons. In our group several IB materials have been proposed, mainly for the photovoltaic application, based on extensively doping known semiconductors with transition metals [2], examining with DFT calculations their electronic structures. Here we refer to In2S3 and SnS2, which contain octahedral cations; when doped with Ti or V an IB is formed according to quantum calculations (see e.g. figure 2). We have used a solvotermal synthesis method to prepare in nanocrystalline form the In2S3 thiospinel and the layered compound SnS2 (which when undoped have bandgaps of 2.0 and 2.2 eV respectively) where the cation is substituted by vanadium at a ?10% level. This substitution has been studied, characterizing the materials by different physical and chemical techniques (TXRF, XRD, HR-TEM/EDS) (see e.g. figure 3) and verifying with UV spectrometry that this substitution introduces in the spectrum the sub-bandgap features predicted by the calculations (figure 4). For both sulphide type nanoparticles (doped and undoped) the photocatalytic activity was studied by following at room temperature the oxidation of formic acid in aqueous suspension, a simple reaction which is easily monitored by UV-Vis spectroscopy. The spectral response of the process is measured using a collection of band pass filters that allow only some wavelengths into the reaction system. Thanks to this method the spectral range in which the materials are active in the photodecomposition (which coincides with the band gap for the undoped samples) can be checked, proving that for the vanadium substituted samples this range is increased, making possible to cover all the visible light range. Furthermore it is checked that these new materials are more photocorrosion resistant than the toxic CdS witch is a well know compound frequently used in tests of visible light photocatalysis. These materials are thus promising not only for degradation of pollutants (or for photovoltaic cells) but also for efficient photoevolution of hydrogen from water; work in this direction is now being pursued.
Resumo:
n this article, a tool for simulating the channel impulse response for indoor visible light communications using 3D computer-aided design (CAD) models is presented. The simulation tool is based on a previous Monte Carlo ray-tracing algorithm for indoor infrared channel estimation, but including wavelength response evaluation. The 3D scene, or the simulation environment, can be defined using any CAD software in which the user specifies, in addition to the setting geometry, the reflection characteristics of the surface materials as well as the structures of the emitters and receivers involved in the simulation. Also, in an effort to improve the computational efficiency, two optimizations are proposed. The first one consists of dividing the setting into cubic regions of equal size, which offers a calculation improvement of approximately 50% compared to not dividing the 3D scene into sub-regions. The second one involves the parallelization of the simulation algorithm, which provides a computational speed-up proportional to the number of processors used.
Resumo:
The scope of the present paper is the derivation of a merit function which predicts the visual perception of LED spot lights. The color uniformity level Usl is described by a linear regression function of the spatial color distribution in the far field. Hereby, the function is derived from four basic functions. They describe the color uniformity of spot lights through different features. The result is a reliable prediction for the perceived color uniformity in spot lights. A human factor experiment was performed to evaluate the visual preferences for colors and patterns. A perceived rank order was derived from the subjects’ answers and compared with the four basic functions. The correlation between the perceived rank order and the basic functions was calculated resulting in the definition of the merit function Usl. The application of this function is shown by a comparison of visual evaluations and measurements of LED retrofit spot lamps. The results enable a prediction of color uniformity levels of simulations and measurements concerning the visual perception. The function provides a possibility to evaluate the far field of spot lights without individual subjective judgment. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
Spotlighting is one illumination field where the application of light emitting diodes (LED) creates many advantages. Commonly, the system for spot lights consists of a LED light engine and collimating secondary optics. Through angular or spatial separated emitted light from the source and imaging optical elements, a non uniform far field appears with colored rings, dots or patterns. Many feasible combinations result in very different spatial color distributions. Several combinations of three multi-chip light sources and secondary optical elements like reflectors and TIR lenses with additional facets or scattering elements were analyzed mainly regarding the color uniformity. They are assessed by the merit function Usl which was derived from human factor experiments and describes the color uniformity based on the visual perception of humans. Furthermore, the optical systems are compared concerning efficiency, peak candela and aspect ratio. Both types of optics differ in the relation between the color uniformity level and other properties. A plain reflector with a slightly color mixing light source performs adequate. The results for the TIR lenses indicate that they need additional elements for good color mixing or blended light source. The most convenient system depends on the requirements of the application.
Resumo:
We proposed in our previous work V-substituted In2S3 as an intermediate band (IB) material able to enhance the efficiency of photovoltaic cells by combining two photons to achieve a higher energy electron excitation, much like natural photosynthesis. Here this hyper-doped material is tested in a photocatalytic reaction using wavelength-controlled light. The results evidence its ability to use photons with wavelengths of up to 750 nm, i.e. with energy significantly lower than the bandgap (=2.0 eV) of non-substituted In2S3, driving with them the photocatalytic reaction at rates comparable to those of non-substituted In2S3 in its photoactivity range (λ ≤ 650 nm). Photoluminescence spectra evidence that the same bandgap excitation as in V-free In2S3 occurs in V-substituted In2S3 upon illumination with photons in the same sub-bandgap energy range which is effective in photocatalysis, and its linear dependence on light intensity proves that this is not due to a nonlinear optical property. This evidences for the first time that a two-photon process can be active in photocatalysis in a single-phase material. Quantum calculations using GW-type many-body perturbation theory suggest that the new band introduced in the In2S3 gap by V insertion is located closer to the conduction band than to the valence band, so that hot carriers produced by the two-photon process would be of electron type; they also show that the absorption coefficients of both transitions involving the IB are of significant and similar magnitude. The results imply that V-substituted In2S3, besides being photocatalytically active in the whole visible light range (a property which could be used for the production of solar fuels), could make possible photovoltaic cells of improved efficiency.
Resumo:
Se aborda por primera vez la relación entre el espectro VNIR de reflectancia especular y los parámetros composicionales del grupo de las espinelas, particularmente cromita
Resumo:
Ternary MCrO4 (M = Ba, Sr) semiconductors are materials with a variety of photocatalyst and optoelectronic applications. We present detailed microscopic analyses based on first principles of the structure, the electronic properties and the optical absorption in which the difference between symmetrically non-equivalent atoms has been considered. The high absorption coefficients of these materials are split into chemical species contributions in accordance with the symmetry. The high optical absorption in these materials is mainly because of the Cr–O inter-species transitions.